JavaServer Pages™
Specification

Version 2.3

Maintenace Release 3

Send comments to jsr-245-comments@jcp.org

Final Release - May 31, 2013 Kin-man Chung

4150 Network Circle
Santa Clara, CA 95054, USA
650 960-1300 fax: 650 969-9131

ORACLE IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION
THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS AGREEMENT. PLEASE READ THE
TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY. BY DOWNLOADING THIS
SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THE AGREEMENT. IF YOU ARE
NOT WILLING TO BE BOUND BY IT, SELECT THE "DECLINE" BUTTON AT THE BOTTOM OF THIS
PAGE.

Specification: JSR-000245 JavaServer(tm) Pages (''Specification'")
Version: 2.3
Status: Maintenance Release 3

Release: 31 May 2013

Copyright 2013 Oracle America, Inc.

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable,
worldwide, limited license (without the right to sublicense), under Specification Lead's applicable intellectual property
rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation. This includes
(i) developing applications intended to run on an implementation of the Specification, provided that such applications do
not themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with any third party;
and (iii) excerpting brief portions of the Specification in oral or written communications which discuss the Specification
provided that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a perpetual, non-
exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or, subject to the provisions of subsection 4 below, patent rights it may have covering the
Specification to create and/or distribute an Independent Implementation of the Specification that: (a) fully implements the
Specification including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise
extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods
within the Licensor Name Space other than those required/authorized by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable
TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose (including, for
example, modifying the Specification, other than to the extent of your fair use rights, or distributing the Specification to
third parties). Also, no right, title, or interest in or to any trademarks, service marks, or trade names of Specification Lead
or Specification Lead's licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular
"pass through" requirements in any license You grant concerning the use of your Independent Implementation or products
derived from it. However, except with respect to Independent Implementations (and products derived from them) that
satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass through to your
licensees any licenses under Specification Lead's applicable intellectual property rights; nor (b) authorize your licensees
to make any claims concerning their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

JavaServer Pages 2.3 Specification

iv

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed
by all technically feasible implementations of the Specification, such license is conditioned upon your offering on fair,
reasonable and non-discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-transferable,
worldwide license under Your patent rights which are or would be infringed by all technically feasible implementations
of the Specification to develop, distribute and use a Compliant Implementation.

b.With respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph
2, whether or not their infringement can be avoided in a technically feasible manner when implementing the Specification,
such license shall terminate with respect to such claims if You initiate a claim against Specification Lead that it has, in
the course of performing its responsibilities as the Specification Lead, induced any other entity to infringe Your patent
rights.

c. Also with respect to any patent claims owned by Specification Lead and covered by the license granted under
subparagraph 2 above, where the infringement of such claims can be avoided in a technically feasible manner when
implementing the Specification such license, with respect to such claims, shall terminate if You initiate a claim against
Specification Lead that its making, having made, using, offering to sell, selling or importing a Compliant Implementation
infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the
Specification that neither derives from any of Specification Lead's source code or binary code materials nor, except with
an appropriate and separate license from Specification Lead, includes any of Specification Lead's source code or binary
code materials; "Licensor Name Space" shall mean the public class or interface declarations whose names begin with
"java", "javax", "com.<Specification Lead>" or their equivalents in any subsequent naming convention adopted by Oracle
through the Java Community Process, or any recognized successors or replacements thereof; and "Technology

Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide provided by Specification
Lead which corresponds to the Specification and that was available either (i) from Specification Lead's 120 days before
the first release of Your Independent Implementation that allows its use for commercial purposes, or (ii) more recently
than 120 days from such release but against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the Agreement or act
outside the scope of the licenses granted above..

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A
CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the Specification in any product. In addition, the Specification could
include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE
SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or implementation;
and/or (iii) any claims that later versions or releases of any Specification furnished to you are incompatible with the
Specification provided to you under this license..

JavaServer Pages 2.3 Specification

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government
prime contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-
4 (for Department of Defense (DoD) acquisitions) and with 48 C.FER. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant
Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other
countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, conditions, representations and warranties and prevails over any conflicting
or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.

JavaServer Pages 2.3 Specification

vi

JavaServer Pages 2.3 Specification

Contents

N 111 P xxi
Prefacecciviiiiiiiiiiiiiiiiiii ittt xxiii
OVeIVIEW .. iiiiiiiiiiiiiiiiiiiittneneeeescnsnsnsannnns XXXi
The JavaServer Pages™ Technology XXX1
BasicConceptst XXX1ii
Users of JavaServer Pages XXX V1
Partl ...t i i i ittt 1-1
JSP.1 Core Syntax and Semanticsco0vvnn.. 1-3
JSP.1.1 WhatlIsaJSPPage 1-3
JSP.1.1.1 Web Containers and Web Components 1-3
JSP.1.1.2 Generating HTML 1-4
JSP.1.1.3 Generating XML 1-4
JSP.1.1.4 Translation and Execution Phases 1-4
JSP.1.1.5 Validating JSPpages 1-5
JSP.1.1.6 EventsinJSPPages 1-6
JSP.1.1.7 JSP Configuration Information 1-6
JSP.1.1.8 Naming Conventions for JSP Files 1-6
JSP.1.1.9 Compiling JSPPages 1-7
JSP.1.1.10 Debugging JSP Pages 1-8

JSP.1.2 Web Applicationsc i, 1-8
JSP.1.2.1 Relative URL Specifications 1-9

JSP.1.3 Syntactic Elements of aJSPPage 1-10
JSP.1.3.1 Elements and Template Data 1-10
JSP.1.3.2 ElementSyntax 1-10
JSP.1.3.3 Startand End Tags I-11
JSP.1.34 EmptyElements 1-12
JSP.1.3.5 Attribute Values 1-12
JSP.1.3.6 Thejsp:attribute, jsp:body and jsp:element Elements
..................................... 1-12

JSP.1.3.7 Valid Names for Actions and Attributes 1-14
JSP.1.3.8 WhiteSpace 1-14
JSP.1.3.9 JSPDocuments 1-15

JavaServer Pages 2.3 Specification

vii

viii

JSP.1.3.10 JSP Syntax Grammar 1-16
JSP.1.4 ErrorHandling 1-33
JSP.1.4.1 Translation Time Processing Errors 1-33
JSP.1.4.2 Request Time Processing Errors 1-34
JSP.1.4.3 Using JSPs as Error Pages 1-34
JSP.1.5 Comments, 1-35
JSP.1.5.1 Comments in JSP Pages in Standard Syntax . 1-35
JSP.1.5.2 Comments in JSP Documents 1-36
JSP.1.6 Quoting and Escape Conventions 1-36
JSP.1.7 Overall Semanticsof aJSPPage 1-38
JSP.1.8 Objectsvet 1-39
JSP.1.8.1 Objects and Variables 1-40
JSP.1.8.2 Objects and Scopes, 1-40
JSP.1.8.3 ImplicitObjects 1-41
JSP.1.8.4 The pageContext Object 1-43
JSP.1.9 Template Text Semantics 1-44
JSP.1.1I0 Directivesouiuininin ... 1-44
JSP.1.10.1 The page Directive 1-44
JSP.1.10.2 The taglib Directive 1-52
JSP.1.10.3 The include Directive 1-54
JSP.1.10.4 TImplicitIncludes 1-54
JSP.1.10.5 Including Data in JSP Pages 1-55
JSP.1.10.6 Additional Directives for Tag Files 1-56
JSP.1.11 ELElements, 1-56
JSP.1.12 Scripting Elements 1-57
JSP.1.12.1 Declarations 1-58
JSP.1.12.2 Scriptlets 1-58
JSP.1.12.3 EXpressionsc.coovuinenon.. 1-59
JSP.1.I3 AcCtionsoii e 1-60
JSP.1.14 Tag Attribute Interpretation Semantics 1-61
JSP.1.14.1 Request Time Attribute Values 1-61
JSP.1.14.2 Type Conversions 1-62
JSP.2 Expression Languagecciiiiiiinennnns 1-65
JSP.2.1 Syntax of expressions in JSP pages: ${} vs #{} 1-65
JSP.2.2 Expressions and Template Text 1-66
JSP.2.3 Expressions and Attribute Values 1-66
JSP.2.3.1 Static Attribute 1-67
JSP.2.3.2 Dynamic Attribute 1-67
JSP.2.3.3 Deferred Value 1-68

JavaServer Pages 2.3 Specification

JSP.2.3.4
JSP.2.3.5
JSP.2.3.6

Deferred Method
Dynamic Attribute or Deferred Expression . .
Examples of Using ${} and #{}

JSP.2.4 TImplicitObjects,
JSP.2.5 Deactivating EL Evaluation
JSP.2.6 Disabling Scripting Elements
JSP.2.7 Invalid EL expressions
JSP.2.8 Errors, Warnings, Default Values
JSP.2.9 Resolution of Variables and their Properties
JSP2.10 Functions,

JSP.2.10.1 Invocation Syntax
JSP.2.10.2 Tag Library Descriptor Information
JSP.2.10.3 Example
JSP.2.10.4 Semantics,
JSP.3 JSP Configuration............cciiiiiiiiinnennns

JSP.3.1 JSP Configuration Information in web.xml
JSP3.2 TaglibMap i
JSP.3.3 JSP Property Groups,

JSP.3.3.1 JSP Property Groups
JSP.3.3.2 Deactivating EL Evaluation
JSP.3.3.3 Disabling Scripting Elements
JSP.3.3.4 Declaring Page Encodings
JSP.3.3.,5 Defining Implicit Includes
JSP.3.3.6 Denoting XML Documents
JSP.3.3.7 Deferred Syntax (character sequence #{)
JSP.3.3.8 Removing whitespaces from template text . .
JSP.3.3.9 Declaring Default Content Type
JSP.3.3.10 Setting Default Buffer Size
JSP.3.3.11 Raising Errors for Undeclared Namespaces .
JSP.4 Internationalization Issues
JSP.4.1 Page Character Encoding
JSP.4.1.1 Standard Syntax
JSP4.12 XML Syntax

JSP.4.2 Response Character Encoding
JSP.4.3 Request Character Encoding
JSP.4.4 XML View Character Encoding
JSP.4.5 Delivering Localized Content

JavaServer Pages 2.3 Specification

ix

JSP.5 Standard Actionscveeeeieeeneeeocennnenss 1-93

JSP.5.1 <jspuseBean>, 1-93
JSP.5.2 <jyspisetProperty> 1-99
JSP.5.3 <jsp:getProperty>.......... 1-101
JSP.54 <jspinclude> 1-103
JSP.5.5 <yspiforward>. 1-105
JSP.5.6 <jspiparam> 1-106
JSP.5.7 <jspiplugin> 1-107
JSP.5.8 <jsprparams> 1-109
JSP.5.9 <yspifallback> 1-109
JSP.5.10 <jsp:attribute> 1-109
JSPS.AT <jspbody> ..o 1-112
JSP.5.12 <jspiinvoke> 1-113
JSP.5.12.1 BasicUsage................ccoovu... 1-113
JSP.5.12.2 Storing Fragment Output 1-113
JSP.5.12.3 Providing a Fragment Access to Variables . . 1-114
JSP5.13 <jsp:doBody>....... 1-115
JSP.5.14 <jspelement>....... 1-117
JSPS.1S <jspitext> .o 1-118
JSP.5.16 <jspoutput> 1-119
JSP.5.17 Other Standard Actions 1-123
JSP.6 JSPDocumentscoviiiiiiiiiieienenenns 1-125
JSP.6.1 Overview of JSP Documents and of XML Views ... 1-125
JSP.6.2 JSPDocuments 1-127
JSP.6.2.1 Identifying JSP Documents 1-127
JSP.6.2.2 Overview of Syntax of JSP Documents1-128
JSP.6.2.3 Semantic Model 1-129
JSP.6.2.4 JSP Document Validation 1-130
JSP.6.3 Syntactic Elements in JSP Documents 1-131
JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries
1-131
JSP.6.3.2 ThejspirootElement 1-132
JSP.6.3.3 The jsp:output Element 1-133
JSP.6.3.4 The jsp:directive.page Element 1-133
JSP.6.3.5 The jsp:directive.include Element 1-134
JSP.6.3.6 Additional Directive Elements in Tag Files . 1-134
JSP.6.3.7 Scripting Elements 1-134
JSP.6.3.8 Other Standard Actions 1-135
JSP.6.3.9 Template Content 1-135

JavaServer Pages 2.3 Specification

JSP.6.3.10 Dynamic Template Content 1-136

JSP.6.4 Examples of JSP Documents 1-136
JSP.6.4.1 Example: A simple JSP document 1-137
JSP.6.4.2 Example: Generating Namespace-aware documents

1-138

JSP.6.4.3 Example: Generating non-XML documents 1-138
JSP.6.4.4 Example: Using Custom Actions and Tag Files 1-

139

JSP.6.5 Possible Future Directions for JSP documents 1-141
JSP.6.5.1 Generating XML Content Natively 1-141
JSP.6.5.2 Schema and XInclude Support 1-142
JSP.7 Tag EXtensionscoceeiieeenceeceaconns 1-143
JSP.7.1 Imtroduction, 1-143
JSP.7.1.1 Goals 1-144
JSP.7.1.2 Overview, 1-145
JSP.7.1.3 Classic Tag Handlers 1-146
JSP.7.1.4 Simple Examples of Classic Tag Handlers . 1-146
JSP.7.1.5 Simple Tag Handlers 1-148
JSP.7.1.6 JSPFragments 1-150
JSP.7.1.7 Simple Examples of Simple Tag Handlers . 1-150
JSP.7.1.8 Attributes With Dynamic Names 1-152
JSP.7.19 EventListeners 1-152
JSP.7.1.10 Jspld Attribute 1-152
JSP.7.1.11 Resource Injection 1-152
JSP.7.2 Taglibrariesouiiiinnennon.. 1-153
JSP.7.2.1 Packaged Tag Libraries 1-154
JSP.7.2.2 Location of Java Classes 1-154
JSP.7.2.3 Tag Library directive 1-154
JSP.7.3 The Tag Library Descriptor 1-155
JSP.7.3.1 Identifying Tag Library Descriptors 1-155
JSP.7.3.2 TLDresourcepath 1-156
JSP.7.3.3 Taglib Map in web.xml 1-157
JSP.7.3.4 Implicit Map Entries from TLDs 1-157
JSP.7.3.5 Implicit Map Entries from the Container . .. 1-157
JSP.7.3.6 Determining the TLD Resource Path 1-158
JSP.7.3.7 Translation-Time Class Loader 1-159
JSP.7.3.8 Assembling a Web Application 1-160
JSP.7.3.9 Well-Known URIs 1-160

JSP.7.3.10 Tag and Tag Library Extension Elements .. 1-160

JavaServer Pages 2.3 Specification

Xi

xii

JSP.7.4 Validation 1-164
JSP.7.4.1 Translation-Time Mechanisms 1-164
JSP.7.4.2 Request-Time Errors 1-165

JSP.7.5 Conventions and Other Issues 1-166
JSP.7.5.1 How to Define New Implicit Objects 1-166
JSP.7.5.2 Access to Vendor-Specific information1-167
JSP.7.5.3 Customizing a Tag Library 1-167

JSP.8 TagFilesovviiiiiiiiiiiiinerneecnsnenanns 1-169

JSP.8.1 Overview 1-169

JSP.8.2 Syntaxof TagFiles 1-170

JSP.8.3 Semanticsof TagFiles 1-170

JSP.8.4 Packaging TagFiles 1-172
JSP.8.4.1 Location of Tag Files 1-173
JSP.8.4.2 PackaginginaJAR 1-173

JSP.8.4.3 Packaging Directly in a Web Application ..1-174
JSP.8.4.4 Packaging as Precompiled Tag Handlers ...1-175

JSP.8.5 TagFileDirectivescoo.... 1-176
JSP.8.5.1 The tag Directive 1-176
JSP.8.5.2 The attribute Directive 1-179
JSP.8.5.3 The variable Directive 1-181

JSP.8.6 TagFilesin XML Syntax 1-184

JSP.8.7 XML ViewofaTagFile 1-184

JSP.8.8 ImplicitObjects, 1-185

JSP.8.9 Variable Synchronization 1-186
JSP.8.9.1 Synchronization Points 1-187
JSP.8.9.2 Synchronization Examples 1-188

JSP.9 Seriptingcoiiiiiiiiiiii it it 1-193

JSP.9.1 Overall Structure 1-193
JSP.9.1.1 ValidJSPPage 1-193
JSP9.1.2 ReservedNames 1-194
JSP.9.1.3 Implementation Flexibility 1-194

JSP.9.2 Declarations Section 1-195

JSP.9.3 Initialization Section 1-195

JSP9.4 MainSection 1-195
JSP.9.4.1 Template Data 1-195
JSP.9.4.2 Scriptlets i i 1-196
JSP.9.4.3 Expressions 1-196
JSP.9.4.4 AcCtionS 1-196

JavaServer Pages 2.3 Specification

JSP.10

XML View

JSP.10.1 XML View of a JSP Document, JSP Page or Tag File . . 1-

199

JSP.10.1.1 JSP Documents and Tag Files in XML Syntax . 1-

199
JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax 1-200
JSP.10.1.3 JSPComments 1-201
JSP.10.1.4 The page Directive 1-201
JSP.10.1.5 The taglib Directive 1-201
JSP.10.1.6 The include Directive 1-202
JSP.10.1.7 Declarations 1-202
JSP.10.1.8 Scriptlets 1-202
JSP.10.1.9 Expressionsc.ocvu... 1-203
JSP.10.1.10 Standard and Custom Actions 1-203
JSP.10.1.11 Request-Time Attribute Expressions 1-203
JSP.10.1.12 Template Text and XML Elements 1-204
JSP.10.1.13 The jsp:id Attribute 1-205
JSP.10.1.14 The tag Directive 1-205
JSP.10.1.15 The attribute Directive 1-205
JSP.10.1.16 The variable Directive 1-206
JSP.10.2 Validating an XML View of aJSPpage 1-206
JSP.10.3 Examples i 1-206
JSP.10.3.1 AJSPdocument 1-207
JSP.10.3.2 A JSP page and its corresponding XML View . 1-

207
JSP.10.3.3 Clearing Out Default Namespace on Include 1-208
JSP.10.3.4 Taglib Direcive Adds to Global Namespace 1-209
JSP.10.3.5 Collective Application of Inclusion Semantics . 1-

209
PartILottt ittt iiitenennenns 2-1
JSP.11 JSPContainercooiiiieiiiienenenennnans 2-3
JSP.11.1 JSPPageModel 2-3
JSP.11.1.1 Protocol Seen by the Web Server 2-3
JSP.11.2 JSP Page Implementation Class 2-5
JSP.11.2.1 APIContractsc.couvuvno... 2-6
JSP.11.2.2 Request and Response Parameters 2-7
JSP.11.2.3 Omitting the extends Attribute 2-8

JavaServer Pages 2.3 Specification

xiii

Xiv

JSP.11.2.4 Using the extends Attribute 2-10
JSP.11.3 Buffering 2-11
JSP.11.4 Precompilation 2-12

JSP.11.4.1 Request Parameter Names 2-12

JSP.11.4.2 Precompilation Protocol 2-13
JSP.11.5 Debugging Requirements 2-13

JSP.11.5.1 Line Number Mapping Guidelines 2-14

JSPI2 Core APIciviiiiiniinnineeneennnssnnnnnes 2-17
Javax.servIetjsp . . .o 1-19

ErrorData 1-22

HttpJspPage 1-24

JspApplicationContextc.ccuiiunennenn.. 1-26

JspContext . ..o .v v 1-29

JspEnginelnfo L 1-35

JSpEXception 1-37

JspFactory 1-39

JspPage 1-42

JspTagException 1-44

JSpWritero 1-46

PageContext i 1-56

SkipPageException 1-65

JSP.2 TagExtension APIccoiiiiiiiiiiin, 2-67
javax.servletjsp.tagext. i 1-69

BodyContent 1-88

BodyTag ... 1-91

BodyTagSupport i 1-95

DynamicAttributes i 1-99

Functionlnfo 1-100

IterationTag 1-102

JspFragment 1-105

JspldConsumer 1-107

JspTag ..o 1-108

PageData 1-109

SimpleTag I-111

SimpleTagSupport 1-114

Tag 1-118

TagAdapter i 1-123

TagAttributelnfo 1-126

JavaServer Pages 2.3 Specification

TagData 1-131
TagExtralnfo 1-134
TagFileInfo 1-137

Taglnfo..... 1-139
Taglibrarylnfo 1-146
TaglibraryValidator 1-151
TagSupport 1-154
TagVariablelnfo 1-159
TryCatchFinally 1-161
ValidationMessage, 1-163
VariableInfo 1-165

JSP.2 Expression Language API 2-169
javax.servletjsp.el. 1-171
ELExceptioncciitiiiiiinennennnn. 1-174
ELParseException 1-176
EXpression 1-178
ExpressionEvaluator 1-180
FunctionMapperc.viiiiiiiiinnnan.. 1-183
ImplicitObjectELResolver 1-184
ScopedAttributeELResolver 1-189
VariableResolver 1-194
PartIIL.coiitiiiiiii ittt rennseensonnnnns 3-1
JSP.A Packaging JSPPagescciiiiiiiiiininnnns 3-3
JSP.A.1 A Very SimpleJSPPage 3-3
JSP.A.2 The JSP Page Packaged as Source ina WAR File 3-3
JSP.A.3 The Servlet for the Compiled JSP Page 3-4
JSP.A.4 The Web Application Descriptor 3-5
JSP.A.5 The WAR for the Compiled JSP Page 3-6
JSP.B JSP Elements of web.xmlcc00iaen. 3-7

JSP.B.1 XML Schema for JSP 2.2 Deployment Descriptor 3-7
JSP.B.2 XML Schema for JSP 2.1 Deployment Descriptor . .. 3-16
JSP.B.3 XML Schema for JSP 2.0 Deployment Descriptor . . . 3-24

JSP.C Tag Library Descriptor Formats 3-31
JSP.C.1 XML Schema for TLD,JSP2.1 3-31
JSP.C.2 XML Schema for TLD, JSP20 3-61

JavaServer Pages 2.3 Specification

XV

Xvi

JSP.C3 DTDforTLD,JSP1.2 3-86
JSP.C4 DTDforTLD,JSP 1.1 3-95
JSP.D Page Encoding Detectionc0ventn. 3-101
JSP.D.1 Detection Algorithm for JSP pages 3-101
JSP.D.2 Detection Algorithm for Tag Files 3-103
JSP.E Changescoviiiiiiiiiiiiiiiienenenennnnns 3-107
JSP.E.1 Changes between JSP2.3 andJSP2.2............ 3-107
JSP.E.2 Changes between JSP 2.2 and JSP 2.1 Final Release 3-107
JSP.E.3 Changes between JSP 2.1 Proposed Final Draft 2 and JSP 2.1
Final Release 3-109
JSP.E.4 Changes between JSP 2.1 Proposed Final Draft and JSP 2.1
Proposed Final Draft2 3-110
E4.1 Resource Injection 3-110
E4.2 JSP document syntax and the DOCTYPE prologue
3-110
E.4.3 Page Character Encoding 3-111
E.4.4 EL Resolvers 3-111
E.4.5 JSP Versionof Tag Files 3-111
E.4.6 Unsupported Tag Directive and Attribute Directive
Attributes in Pre-2.1 TagFiles 3-111
E.4.7 Static Attribute 3-112
JSP.E.5 Changes between JSP 2.1 Public Review and JSP 2.1 Pro-
posed Final Draft 3-112
E.5.8 Resource Injection 3-112
E.5.9 Deferred expressions in tag files 3-112
E.5.10 Deferred expressions for dynamic attributes . 3-112
E.5.11 ResourceBundleELResolver 3-113
E.5.12 Clarified required support for JSR-45 ("Debugging
Support for Other Languages") 3-113
E.5.13 Byte Order Mark and Page Encoding 3-113
E.5.14 TagAttributelnfo 3-113
E.5.15 Taglib map order of precedence 3-113
E.5.16 Genericscouvuiriin .. 3-113
E.5.17 Various Clarifications 3-114
JSP.E.6 Changes between JSP 2.1 EDR and JSP 2.1 Public Review
3-114
E.6.18 Backwards Compatibility with JSP 2.0 3-114

JavaServer Pages 2.3 Specification

E.6.19

E.6.20
E.6.21
E.6.22
E.6.23
E.6.24
E.6.25
E.6.26
E.6.27
E.6.28
E.6.29
E.6.30
E.6.31

Faces Action Attribute and MethodExpression . 3-
114

Additional element for the TLD 3-115
New Jspld attribute 3-115
Removing whitespaces from template text .. 3-115
Response Status Code for JSP error page ... 3-115

Comments in JSP Documents 3-115
Byte Order Mark and Page Encoding 3-116
TagLibrarylnfo 3-116
SimpleTag and <body-content> 3-116
JspApplicationContext.addResolver() 3-116
Duplicate tag files 3-116
Table 1-9 3-116
Restructuring of APIchapters 3-117

JSP.E.7 Changes between JSP 2.0 Final and JSP 2.1 EDRI1 . 3-117

E.7.32

E.7.33

E.7.34
E.7.35
E.7.36

E.7.37
E.7.38
E.7.39
E.7.40

E.7.41
E.7.42
E.7.43

New specification document for the Expression Lan-
GUAZE .« vttt et e 3-117
Backwards Compatibility and Migration Guidelines
3-117

Chapter 2 - Expression Language 3-117
New class javax.servlet.jsp.JspApplicationContext 3-117
New method getJspApplicationContext on JspFactory 3-
118

Major changes to the javax.serviet.jsp.el APl . 3-118

JSP.E9

JSP.E.10
JSP.E.11
JSP.E.12
JSP.E.13

New method getELContext on JspContext 3-118
New rules for tag handler attributes 3-118

TLD schema now supports deferred expressions as
attributes 3-118
Syntax of EL expressions 3-119
Constraints on the use of ${} and #{} 3-119
Escaping EL expressions 3-119
JSP.E.8 Changes between JSP 2.0 PFD3 and JSP 2.0 Final . 3-120
Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3 . 3-121
Changes between JSP 2.0 PFD and JSP 2.0 PFD2 .. 3-123
Changes between JSP 2.0 PFD1a and JSP 2.0 PFD . 3-127
Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a . 3-129
Changes between JSP 2.0 PD1 and JSP 2.0 PD2 ... 3-130
Changes between JSP 2.0 CD2 and JSP 2.0 PD1 ... 3-131

JSP.E.14

JavaServer Pages 2.3 Specification

Xvii

Xviii

JSP.E.15 Changes between JSP 2.0 CD1 and JSP 2.0 CD2 ...3-131

E.15.44 Between CD2cand CD2 3-131
E.15.45 Between CD2band CD2c 3-132
E.15.46 Between CD2aand CD2b 3-133
E.15.47 Changes between CD1 and CD2a 3-133
JSP.E.16 Changes between JSP 2.0 ED1 and JSP 2.0 CD1 ...3-133
E.16.48 JSP Fragments, .tag Files, and Simple Tag Handlers
3-134
E.16.49 Expression Language Added 3-134
E.16.50 EBNFFixes 3-134
E.16.51 I18N Clarifications 3-134
E.16.52 Other Changes 3-134
JSP.E.17 Changes Between JSP 1.2 Final Draft and JSP 2.0 EDI . 3-
135
E.17.53 Typographical Fixes and Version Numbers .3-135
E.17.54 Added EBNF Grammar for JSP Standard Syntax 3-
135
E.17.55 Added Users of JavaServer Pages Section . .3-135
E.17.56 Added Placeholders for Expression Language and
Custom Actions Using JSP 3-135
E.17.57 Added Requirement for Debugging Support . 3-135
JSP.E.18 Changes Between PFD 2 and Final Draft 3-135
E.18.58 Added jsp:id mechanism 3-136
E.18.59 Other Small Changes 3-136
E.18.60 Clarification of roleofid 3-136
E.18.61 Clarifications on Multiple Requests and Threading
3-136
E.18.62 Clarifications on JSP Documents 3-137
E.18.63 Clarifications on Well Known Tag Libraries 3-137
E.18.64 Clarified Impact of Blocks 3-137
E.18.65 Other Small Clarifications 3-137
JSP.E.19 Changes Between 1.2 PFD lband PFD2 3-138
E.19.66 Added elements to Tag Library Descriptor . .3-138
E.19.67 Changed the way version information is encoded into
TLD . 3-138
E.19.68 Assigning String literals to Object attributes . 3-139
E.19.69 Clarification on valid names for prefix, action and at-

tributes ... 3-139

JavaServer Pages 2.3 Specification

Xix

E.19.70 Clarification of details of empty actions 3-139

E.19.71 Corrections related to XML syntax 3-139
E.19.72 Otherchanges 3-140
JSP.E.20 Changes Between 1.2 PFDand 1.2PFD 1b 3-140
JSP.E.21 Changes Between 1.2PDl and 1.2PFD 3-140
E.21.73 Deletions 3-141
E.21.74 Additionso 3-141
E.21.75 Clarifications 3-141
E.21.76 Changes 3-142
JSP.E.22 Changes Between 1.1 and 1.2PD1 3-142
E.22.77 Organizational Changes 3-142
E.22.78 New Document 3-143
E.22.79 Additionsto APT 3-143
E.22.80 Clarifications 3-144
E.22.81 Changes i, 3-144
JSP.E.23 Changes Between 1.0and 1.1 3-144
E.23.82 Additions 3-144
E.23.83 Changes 3-145
JSP.F GlosSaryviiiiiiiiiiiiiiiiitirttrcnrannns 3-147

JavaServer Pages 2.3 Specification

XX

JavaServer Pages 2.3 Specification

Status

This is JSP 2.3 (Maintenance Release 3of JSP 2.1). JSP 2.1 was developed
by the expert group JSR-245 under the Java Community Process (more details at
http://jcp.org/jsr/detail/245 jsp).

The Java Community Process

The JCP produces a specification using three communities: an expert commu-
nity (the expert group), the participants of the JCP, and the public-at-large. The
expert group is responsible for the authoring of the specification through a collec-
tion of drafts. Specification drafts move from the expert community, through the
participants, to the public, gaining in detail and completeness, always feeding
received comments back to the expert group. The final draft is submitted for
approval by the Executive Committee. The expert group lead is responsible for
facilitating the workings of the expert group, for authoring the specification, and for
delivering the reference implementation and the conformance test suite.

The JCP and This Specification

The JCP is designed to be a very flexible process so each expert group can
address the requirements of the specific communities it serves.

This specification includes chapters that are derived directly from the Javadoc
comments in the API classes, but, were there to be any discrepancies, this
specification has precedence over the Javadoc comments.

The JCP process provides a mechanism for updating the specification through
a maintenance process using erratas. If available, the erratas will have precedence
over this specification.

JavaServer Pages 2.3 Specification

XX1

Xxii

JavaServer Pages 2.3 Specification

Preface

This document is the JavaServer™ Pages 2.3 Specification (JSP 2.3). This
specification is being developed following the Java Community Process (JCP).

JSP 2.3 Relation to JSP 2.2

JSP 2.3 is a mantenance release for JSP 2.2.

» JSP 2.3 specification uses Servlet 3.1 specification for its web semantics.

* JSP 2.3 specification is a component of Java™ Platform, Enterprise Edition
7(Java EE 7) specification.

» JSP 2.3 specification requires the Java™ Platform, Standard Edition 7(Java
SE 7), or later.

JSP 2.2 Relation to JSP 2.1

JSP 2.2 is a mantenance release for JSP 2.1.

» JSP 2.2 specification uses Servlet 3.0 specification for its web semantics.

* JSP 2.2 specification is a component of Java™ Platform, Enterprise Edition 6
(Java EE 6) specification.

» JSP 2.2 specification requires the Java™ Platform, Standard Edition 6 (Java
SE 6), or later.

JavaServer Pages 2.3 Specification xxiii

XXiV

JSP 2.1 Relation To JSP 2.0

JSP 2.1 extends the JavaServer Pages 2.0 Specification (JSP 2.0) in the follow-
ing ways:

» The JSP specification now features a unified expression language, which is the
result of the integration of the expression languages defined in the JSP 2.0 and
Faces 1.1 specifications. The new unified expression language is defined in its
own specification document, delivered along with the JSP 2.1 specification.

» The JSP 2.1 specification uses the Servlet 2.5 specification for its web seman-
tics.

» The JSP 2.1 specification requires the Java™ 2 Platform, Standard Edition ver-
sion 5.0 or later.

Backwards Compatibility with JSP 2.0
As of JSP 2.1, the character sequence #{ is reserved for EL expressions.

When used as a tag attribute value, the #{expr} syntax is evaluated by the
container only if the the jsp-version element specified in the TLD has the value
2.1 or higher. If the version specified is less than 2.1, then the {expr} syntax is
simply processed as a String literal.

When used in template text in a JSP page, the #{ character sequence triggers a
translation error, unless specifically allowed through a configuration setup. This
is because the #{} syntax is associated exclusively with deferred-evaluation in JSP
2.1 and does not make sense in the context of template text (only immediate
evaluation using the ${expr} syntax makes sense in template text).

In a tag file, #{expr} in template text is handled according to the tag file’s JSP
version: If the tag file’s JSP version is 2.0 or less, #{expr} in template text will not
cause any error. If the tag file’s JSP version is equal to or greater than 2.1, #{expr}
in template text must cause an error, unless it has been escaped or the tag file
contains a deferredSyntaxAllowedAsLiteral tag directive attribute set to TRUE.
See Section JSP.8.4.2, “Packaging in a JAR”, and Section JSP.8.4.3, “Packaging
Directly in a Web Application”, for how the JSP version of a tag file is
determined.

JavaServer Pages 2.3 Specification

Similarly, the #{ character sequence triggers a translation error if used for a tag
attribute of a tag library where the jsp-version is greater than or equal to 2.1, and
for which the attribute is not marked as a deferred expression in the TLD.

A web-application developed for a JSP version that is prior to JSP 2.1 may
therefore suffer from the following backwards incompatibilities:

o If #{ is used in template text as a String literal, it must be

escaped using \#{, or through a configuration setup (described
below).

* When a tag library is upgraded to a jsp-version that is greater
than or equal to 2.1, then String literals specified as attribute
values that include the sequence #{ will need to be escaped
using \#{, or through a configuration setup (described below).

Configuration setup to allow the #{ character sequence as String literal

It is possible to allow the use of the #{ character sequence as a String literal (in
template text of JSP 2.1+ containers or as an attribute value for a tag-library where
jsp-version is 2.1+) through the property deferred-syntax-allowed-as-literal of JSP
Property Groups (See Section JSP.3.3.7, “Deferred Syntax (character sequence
#{)”) or the page/tag-file directive attribute

JavaServer Pages 2.3 Specification

XXV

XXVi

deferredSyntax AllowedAsStringLiteral (See Section JSP.1.10.1, “The page
Directive” and Section JSP.8.5.1, “The tag Directive”).

What this means for a JSP/Faces developer

You can run all your JSP 2.0 webapps as-is (well, almost as-is') on the latest
and greatest JSP 2.1 containers! However, please be aware of the following if your
web-application uses third party tag libraries that are based on Faces 1.1 or earlier.

* Some new features provided by JSP 2.1 and Faces 1.2 can
only be used with Faces 1.2-based tag libraries. For example,
while EL functions may now be used in the Faces 1.2 core and

html tag libraries, they cannot be used with third party tag
libraries that are based on Faces 1.1 and earlier.

Licensing of Specification

Details on the conditions under which this document is distributed are described
in the license agreement on page v.

Who Should Read This Document

This document is the authoritative JSP 2.3 specification. It is intended to pro-
vide requirements for implementations of JSP page processing, and support by web
containers in web servers and application servers. As an authoritative document, it
covers material pertaining to a wide audience, including Page Authors, Tag Library
Developers, Deployers, Container Vendors, and Tool Vendors.

This document is not intended to be a user’s guide. We expect other
documents will be created that will cater to different readerships.

Organization of This Document
This document comprises of a number of Chapters and Appendices that are

organized into 3 parts. In addition, the document contains a “Preface” (this section),
a “Status” on page xxi, and an “Overview” on page XXXi.

" The character sequence #{' is now reserved by JSP. So If you are using '#{' in template
text or as a literal in an attribute value for a 1.2-based taglib, the sequence will have to be
escaped.

JavaServer Pages 2.3 Specification

Part I contains several chapters intended for all JSP Page Authors. These
chapters describe the general structure of the language, including the expression
language, fragments, and scripting.

Part II contains detailed chapters on the JSP container engine and API in full
detail. The information in this part is intended for advanced JSP users.

Finally, Part III contains all the appendices.

Historical Note

The following individuals were pioneers who did ground-breaking work on the
Java platform areas related to this specification. James Gosling’s work on a Web
Server in Java in 1994/1995 became the foundation for servlets. A larger project
emerged in 1996 with Pavani Diwanji as lead engineer and with many other key
members listed below. From this project came Sun’s Java Web Server product.

Things started to move quickly in 1999. The servlet expert group, with James
Davidson as lead, delivered the Servlet 2.1 specification in January and the Servlet
2.2 specification in December, while the JSP group, with Larry Cable and
Eduardo Pelegri-Llopart as leads, delivered JSP 1.0 in June and JSP 1.1 in
December.

The year 2000 saw a lot of activity, with many implementations of containers,
tools, books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Platform,
Enterprise Edition. Tag libraries were an area of intense development, as were
varying approaches to organizing all these features together. The adoption of JSP
technology has continued in the year 2001, with many talks at the “Web, Services
and beyond” track at JavaOne being dedicated to the technology.

The JSP 1.2 specification went final in 2001. JSP 1.2 provided a number of
fine-tunings of the spec. It also added the ability for validating JSP pages through
the XML views of a JSP page. JSP 1.2 also introduced a normative XML syntax
for JSP pages, but its adoption was handicaped by several specification
shortcomings.

JSP 2.0 brought a major revision of the JSP language. Key new features
included the simple Expression Language (EL), tag files, substantial
simplifications for writing tag handlers in Java and the notion of JSP fragments.
JSP 2.0 also included a revision of the XML syntax that addresses most of the
problems in JSP 1.2.

The primary goal of JSP 2.1 is to unify the Expression Language used by JSP
and JSF pages. The Expression language is therefore defined in its own
specification document making it clear that it has general applicability and does
not carry a dependency on any specific technology.

JavaServer Pages 2.3 Specification

XX Vil

XXViil

In JSP 2.3, Expression Language(EL) is formerly removed from the JSP
specification. JSP 2.3 supports and depends on EL 3.0.

Acknowledgments for JSP 2.1

Many thanks to all the individuals who have contributed to this version of the
specification.

We want to thank members of the Expert Group: Shawn Bayern, Hans
Bergsten, Paul Bonfanti (New Atlanta Communications), Elaine Chien, Kin-Man
Chung, Bill Dudney, Satish Duggana (Pramati Technologies), Jayson Falkner,
Kjeld Froberg (Trifork Technologies), Sumathi Gopalakrishnan (Oracle),
Geoffrey Greene (Macromedia), Randal Hanford (Boeing), Andy Hedges (Cap
Gemini), Larry Isaacs (SA Institute), Scott Johnson (IBM), Kevin Jones
(DevelopMentor), Vishy Kasar (Borland), Serge Knystautas (Apache Software
Foundation), Changshin Lee (Tmax Soft), Felipe Leme, Kito Mann, Eddie O'Neil
(BEA), John Rousseau (Novell), Kris Schneider, Nicholas Shulman (BEA), Sue
Spielman, Hani Suleiman (Ironflare AB), Srinagesh Susarla (BEA),
Sivasundaram Umapathy, Ana von Klopp.

Special mention is due to Hani Suleiman, Felipe Leme, Scott Johnson, and
Sumathi Gopalakrishnan for their overall active participation to the expert group
discussions.

The editors also want to give special thanks to the individuals within the Java
Enterprise Edition platform team at Sun Microsystems, and especially to Bill
Shannon, Eduardo Pellegri-Llopart, Jim Driscoll, Karen Schaffer, Kin-Man
Chung, Nick Rodin, Sheri Shen, Jean-Francois Arcand, Jennifer Ball, Tony Ng,
Ed Burns, Jayashri Visvanathan, Roger Kitain, Ryan Lubke, Dhiru Pandey, Greg
Murray, and Norbert Lindenberg.

Acknowledgments for JSP 2.0

Many people contributed to the JavaServer Pages specifications. The success
of the Java Platform depends on the Java Community Process used to define and
evolve it. This process, which involves many individuals and corporations,
promotes the development of high quality specifications in Internet time.

Although it is impossible to list all the individuals who have contributed to
this version of the specification, we would like to give thanks to all the members
in our expert group. We have the benefit of a very large, active and enthusiastic
expert group, without which the JSP specifications would not have succeeded.

JavaServer Pages 2.3 Specification

We want to thank:

Nathan Abramson (Individual), Tim Ampe (Persistence Software Inc.),
Shawn Bayern (Individual), Hans Bergsten (Individual), Paul Bonfanti (New
Atlanta Communications Inc.), Prasad BV (Pramati Technologies), Bjorn Carlson
(America Online), Murthy Chintalapati (Sun Microsystems, Inc.), Kin-Man
Chung (Sun Microsystems, Inc.), Bill de hOra (InterX PLC), Ciaran Dynes
(IONA Technologies PLC), Jayson Falkner (Individual), James Goodwill
(Individual), Kouros Gorgani (Sybase), Randal Hanford (Boeing), Larry Isaacs
(SAS Institute Inc.), Kevin R. Jones (Developmentor), Francois Jouaux (Apple
Computer Inc.), Vishy Kasar (Borland Software Corporation), Ana Von Klopp
(Sun Microsystems, Inc.), Matt LaMantia (Art Technology Group, Inc.), Bart
Leeten (EDS), Geir Magnusson Jr. (Apache Software Foundation), Jason McGee
(IBM), Brian McKellar (SAP AG), Shawn McMurdo (Lutris Technologies),
Charles Morehead (Art Technology Group Inc.), Lars Oleson (SeeBeyond
Technology Corp.), Jeff Plager (Sybase), Boris Pruessmann (Adobe Systems,
Inc.), Tom Reilly (Macromedia, Inc.), Ricardo Rocha (Apache Software
Foundation), John Rousseau (Novell, Inc.), James Strachan (Individual),
Srinagesh Susarla (BEA Systems), Alex Yiu (Oracle).

We want to thank the community that implemented the reference
implementation, and the vendors that have implemented the spec, the authoring
tools, and the tag libraries.

Special mention is due to: Hans Bergsten for his numerous thorough reviews
and technical accuracy, Shawn Bayern for his tireless help with the EL and RI,
Alex Yiu for his thorough analysis on the invocation protocol and I18N, Nathan
Abramson for his in-depth technical expertise and ideas, Norbert Lindenberg for
his overhaul of the I18N chapter, Jan Luehe and Kin-Man Chung for keeping the
RI more than up-to-date with the specification allowing for real-time feedback,
Ana von Klopp for her help with JSR-45 debugging and keeping the tools
perspective fresh in our minds, and Umit Yalcinalp for her conversion of the TLD
and deployment descriptors into XML Schema.

We want to thank all the authors of books on JSP technology, and the creators
of the web sites that are tracking and facilitating the creation of the JSP
community.

The editors want to give special thanks to many individuals within the Java 2
Enterprise Edition team, and especially to Jean-Francois Arcand, Jennifer Ball,
Stephanie Bodoff, Pierre Delisle, Jim Driscoll, Cheng Fang, Robert Field, Justyna
Horwat, Dianne Jiao, Norbert Lindenberg, Ryan Lubke, Jan Luehe, Craig
McClanahan, Bill Shannon, Prasad Subramanian, Norman Walsh, Yutaka
Yoshida, Kathleen Zelony, and to Ian Evans for his editorial work.

JavaServer Pages 2.3 Specification

XX1X

XXX

Lastly, but most importantly, we thank the software developers, web authors
and members of the general public who have read this specification, used the
reference implementation, and shared their experience. You are the reason the
JavaServer Pages technology exists!

JavaServer Pages 2.3 Specification

Overview

This is an overview of the JavaServer Pages technology.

The JavaServer Pages™ Technology

JavaServer" Pages (JSP) is the Java" Platform, Enterprise Edition (Java EE)
technology for building applications for generating dynamic web content, such as
HTML, DHTML, XHTML, and XML. JSP technology enables the easy authoring
of web pages that create dynamic content with maximum power and flexibility.

General Concepts

JSP technology provides the means for textual specification of the creation of a
dynamic response to a request. The technology builds on the following concepts:

* Template Data
A substantial portion of most dynamic content is fixed or femplate content.
Text or XML fragments are typical template data. JSP technology supports
natural manipulation of template data.

* Addition of Dynamic Data
JSP technology provides a simple, yet powerful, way to add dynamic data to
template data.

* Encapsulation of Functionality
JSP technology provides two related mechanisms for the encapsulation of

functionality: JavaBeans" component architecture, and tag libraries deliver-

JavaServer Pages 2.3 Specification XXXi

Xxxil

ing custom actions, functions, listener classes, and validation.

* Good Tool Support

Good tool support leads to significantly improved productivity. Accordingly,
JSP technology has features that enable the creation of good authoring tools.

Careful development of these concepts yields a flexible and powerful server-
side technology.

Benefits of JavaServer Pages Technology

JSP technology offers the following benefits:

 Write Once, Run Anywhere" properties

JSP technology is platform independent in its dynamic web pages, its web
servers, and its underlying server components. JSP pages may be authored on
any platform, run on any web server or web enabled application server, and
accessed from any web browser. Server components can be built on any plat-
form and run on any server.

* High quality tool support

Platform independence allows the JSP user to choose best-of-breed tools.
Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

» Separation of Roles

JSP supports the separation of developer and author roles. Developers write
components that interact with server-side objects. Authors put static data and
dynamic content together to create presentations suited for their intended
audience.

Each group may do their job without knowing the job of the other. Each role
emphasizes different abilities and, although these abilities may be present in
the same individual, they most commonly will not be. Separation allows a
natural division of labor.

A subset of the developer community may be engaged in developing reusable
components intended to be used by authors.

* Reuse of components and tag libraries

JavaServer Pages technology emphasizes the use of reusable components

JavaServer Pages 2.3 Specification

XXX1ii

such as JavaBeans components, Enterprise JavaBeans™ components, and tag
libraries. These components can be used with interactive tools for component
development and page composition, yielding considerable development time
savings. In addition, they provide the cross-platform power and flexibility of
the Java programming language or other scripting languages.

o Separation of dynamic and static content

JavaServer Pages technology enables the separation of static content in a tem-
plate from dynamic content that is inserted into the static template. This
greatly simplifies the creation of content. The separation is supported by
beans specifically designed for the interaction with server-side objects, and by
the tag extension mechanism.

* Support for actions, expressions, and scripting

JavaServer Pages technology supports scripting elements as well as actions.
Actions encapsulate useful functionality in a convenient form that can be
manipulated by tools. Expressions are used to access data. Scripts can be used
to glue together this functionality in a per-page manner.

The JSP 2.0 specification added a simple expression language (EL) to Java-
based scripts. Expressions in the EL directly express page author concepts
like properties in beans and provide more controlled access to the Web Appli-
cation data. Functions defined through the tag library mechanism can be
accessed in the EL.

The JSP 2.0 specification also added a mechanism by which page authors can
write actions using the JSP technology directly. This greatly increases the
ease with which action abstractions can be created.

* Web access layer for N-tier enterprise application architecture(s)

JavaServer Pages technology is an integral part of Java EE. The Java EE plat-
form brings Java technology to enterprise computing. One can now develop
powerful middle-tier server applications that include a web site using JavaSer-
ver Pages technology as a front end to Enterprise JavaBeans components in a
Java EE compliant environment.

Basic Concepts

This section introduces basic concepts that will be defined formally later in the
specification.

JavaServer Pages 2.3 Specification

XXX1V

What Is a JSP Page?

A JSP page is a text-based document that describes how to process a request to
create a response. The description intermixes template data with dynamic actions
and leverages the Java Platform. JSP technology supports a number of different par-
adigms for authoring dynamic content. The key features of JavaServer Pages are:

* Standard directives
 Standard actions

* Scripting elements

* Tag Extension mechanism

* Template content

Web Applications

The concept of a web application is inherited from the servlet specification. A
web application can be composed of:

* Java Runtime Environment(s) running on the server (required)

» JSP page(s) that handle requests and generate dynamic content

* Servlet(s) that handle requests and generate dynamic content

» Server-side JavaBeans components that encapsulate behavior and state
» Static HTML, DHTML, XHTML, XML, and similar pages.

* Client-side Java Applets, JavaBeans components, and arbitrary Java class
files

* Java Runtime Environment(s) running in client(s) (downloadable via the Plu-

gin and Java™ Web Start technology)

The JavaServer Pages specification inherits from the servlet specification the
concepts of web applications, ServletContexts, sessions, and requests and
responses. See the Java Servlet 2.5 specification for more details.

JavaServer Pages 2.3 Specification

XXXV

Components and Containers

JSP pages and servlet classes are collectively referred to as web components.
JSP pages are delivered to a container that provides the services indicated in the JSP
Component Contract.

The separation of components from containers allows the reuse of
components, with quality-of-service features provided by the container.

Translation and Execution Steps

JSP pages are textual components. They go through two phases: a translation
phase, and a request phase. Translation is done once per page. The request phase is
done once per request.

The JSP page is translated to create a servlet class, the JSP page
implementation class, that is instantiated at request time. The instantiated JSP
page object handles requests and creates responses.

JSP pages may be translated prior to their use, providing the web application,
with a servlet class that can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time, or
on-demand as the requests reach an untranslated JSP page.

Deployment Descriptor and Global Information

The JSP pages delivered in a web application may require some JSP configura-
tion information. This information is delivered through JSP-specific elements in the
web.xml deployment descriptor, rooted on the <jsp-config> element. Configuration
information includes <taglib> elements in mapping of tag libraries and <jsp-prop-
erty-group> elements used to provide properties of collections of JSP files. The
properties that can be indicated this way include page encoding information, EL.
evaluation activation, automatic includes before and after pages, and whether script-
ing is enabled in a given page.

Role in the Java Platform, Enterprise Edition

With a few exceptions, integration of JSP pages within the Java EE 6.0 platform
is inherited from the Servlet 2.5 specification since translation turns JSPs into serv-
lets.

JavaServer Pages 2.3 Specification

XXXVi

Users of JavaServer Pages

There are six classes of users that interact with JavaServer Pages technology.
This section describes each class of user, enumerates the technologies each must be
familiar with, and identifies which sections of this specification are most relevant to
each user class. The intent is to ensure that JavaServer Pages remains a practical and
easy-to-use technology for each class of user, even as the language continues to
grow.

Page Authors

Page Authors are application component providers that use JavaServer Pages to
develop the presentation component of a web application. It is expected that they
will not make use of the scripting capabilities of JavaServer Pages, but rather limit
their use to standard and custom actions. Therefore, it is assumed that they know the
target language, such as HTML or XML, and basic XML concepts, but they need
not know Java at all.

The following sections are most relevant to this class of user:

* Chapter JSP.1, “Core Syntax and Semantics”, except for Section JSP.1.12,
“Scripting Elements” and Section JSP.1.14, “Tag Attribute Interpretation Se-
mantics”, which both talk about scripting.

* Chapter JSP.2, “Expression Language”

* Chapter JSP.3, “JSP Configuration”

* Chapter JSP.4, “Internationalization Issues”
* Chapter JSP.5, “Standard Actions”

* Chapter JSP.6, “JSP Documents”, except for sections that discuss declara-
tions, scriptlets, expressions, and request-time attributes.

e Section JSP.7.1.1, “Goals” and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

* Chapter JSP.8, “Tag Files”.

» Appendices Appendix JSP.A, “Packaging JSP Pages”, Appendix JSP.E,
“Changes”, and Appendix JSP.F, “Glossary”.

JavaServer Pages 2.3 Specification

XXX Vil

Advanced Page Authors

Like Page Authors, Advanced Page Authors are also application component
providers that use JavaServer Pages to develop the presentation component of a web
application. These authors have a better understanding of XML and also know Java.
Though they are recommended to avoid it where possible, these authors do have
scripting at their disposal and should be able to read and understand JSPs that make
use of scripting.

The following sections are most relevant to this class of user:

* Chapters Chapter JSP.1, “Core Syntax and Semantics”, Chapter JSP.2, “Ex-
pression Language”, Chapter JSP.3, “JSP Configuration”, Chapter JSP.4, “In-
ternationalization Issues” and Chapter JSP.5, “Standard Actions”.

* Chapter JSP.6, “JSP Documents”.

* Section JSP.9.1.1, “Valid JSP Page” and Section JSP.9.1.2, “Reserved Names”
of Chapter JSP.9, “Scripting”.

e Section JSP.7.1.1, “Goals” and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

e Chapter JSP.8, “Tag Files”
* Section JSP.11.4, “Precompilation” of Chapter JSP.11, “JSP Container”
* Chapter JSP.12, “Core API”

* Appendices Appendix JSP.A, “Packaging JSP Pages”, Appendix JSP.B, “JSP
Elements of web.xml”, Appendix JSP.E, “Changes”, and Appendix JSP.F,
“Glossary”.

Tag Library Developers

Tag Library Developers are application component providers who write tag
libraries that provide increased functionality to Page Authors and Advanced Page
Authors. They have an advanced understanding of the target language, XML, and
Java.

The following sections are most relevant to this class of user:

* Chapters Chapter JSP.1, “Core Syntax and Semantics”, Chapter JSP.2, “Ex-
pression Language”, Chapter JSP.3, “JSP Configuration”, Chapter JSP.4, “In-
ternationalization Issues” and Chapter JSP.5, “Standard Actions”.

* Chapter JSP.6, “JSP Documents”.

JavaServer Pages 2.3 Specification

XXXViil

* Section JSP.9.1.1, “Valid JSP Page” and Section JSP.9.1.2, “Reserved Names”
of Chapter JSP.9, “Scripting”.

* Chapter JSP.7, “Tag Extensions”

* Chapter JSP.8, “Tag Files”

* Section JSP.11.4, “Precompilation” of Chapter JSP.11, “JSP Container”
* Chapter JSP.12, “Core API” and Chapter JSP.2, “Tag Extension API”

* All Appendices.

Deployers

A deployer is an expert in a specific operational environment who is responsible
for configuring a web application for, and deploying the web application to, that
environment. The deployer does not need to understand the target language or Java,
but must have an understanding of XML or use tools that provide the ability to read
deployment descriptors.

The following sections are most relevant to this class of user:

* Section JSP.1.1, “What Is a JSP Page” and Section JSP.1.2, “Web Applica-
tions” of Chapter JSP.1, “Core Syntax and Semantics”

* Chapter JSP.3, “JSP Configuration”

* Chapter JSP.4, “Internationalization Issues”
e Chapter JSP.11, “JSP Container”

* All Appendices.

Container Developers and Tool Vendors

Container Developers develop containers that host JavaServer Pages. Tool Ven-
dors write development tools to assist Page Authors, Advanced Page Authors, Tag
Library Developers, and Deployers. Both Container Developers and Tool Vendors
must know XML and Java, and must know all the requirements and technical details
of JavaServer Pages. Therefore, this entire specification is relevant to both classes of
user.

JavaServer Pages 2.3 Specification

Part 1

The next chapters form the core of the JSP specification. These chapters pro-
vide information for Page authors, Tag Library developers, deployers and Container
and Tool vendors.

The chapters of this part are:

Core Syntax and Semantics
Expression Language
Configuration Information
Internationalization Issues
Standard Actions

JSP Documents

Tag Extensions

Tag Files

Scripting

XML Views

JavaServer Pages 2.3 Specification

1-1

1-2

JavaServer Pages 2.3 Specification

e d SPL

Core Syntax and Semantics

This chapter describes the core syntax and semantics for the JavaServer Pages
2.2 specification (JSP 2.2).

JSP.1.1 What Is a JSP Page

A JSP page is a textual document that describes how to create a response object
from a request object for a given protocol. The processing of the JSP page may
involve creating and/or using other objects.

A JSP page defines a JSP page implementation class that implements the
semantics of the JSP page. This class implements the javax.servlet.Servlet
interface (see Chapter JSP.11, “JSP Container” for details). At request time a
request intended for the JSP page is delivered to the JSP page implementation
object for processing.

HTTP is the default protocol for requests and responses. Additional request/
response protocols may be supported by JSP containers. The default request and
response objects are of type HttpServletRequest and HttpServletResponse
respectively.

JSP.1.1.1 Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management
and runtime support for JSP pages and servlet components. Requests sent to a JSP
page are delivered by the JSP container to the appropriate JSP page implementation
object. The term web container is synonymous with JSP container.

A web component is either a servlet or a JSP page. The servlet element in a
web.xml deployment descriptor is used to describe both types of web components.
JSP page components are defined implicitly in the deployment descriptor through

JavaServer Pages 2.3 Specification

1-4

CORE SYNTAX AND SEMANTICS

the use of an implicit .jsp extension mapping, or explicitly through the use of a
jsp-group element.

JSP.1.1.2 Generating HTML

A traditional application domain of the JSP technology is HTML content. The
JSP specification supports well this use through a syntax that is friendly to HTML
and XML although it is not HTML-specific; for instance, HTML comments are
treated no differently than other HTML content. The JSP Standard Tag Library has
specific support for HTML though some specific custom actions.

JSP.1.1.3 Generating XML

An increasingly important application domain for JSP technology is dynamic
XML content using formats like XHTML, SVG and the Open Office format, and in
applications like content publishing, data representation and Web Services. The
basic JSP machinery (JSP syntax) can be used to generate XML content, but it is
also possible to tag a JSP page as a JSP document and get additional benefits.

A JSP document is an XML document; this means that a JSP document is a
well-formed, structured document and that this will be validated by the JSP
container. Additionally, this structure will be available to the JSP validation
machinery, the TagLibraryValidators. A JSP document is a namespace-aware
XML document, with namespaces reflecting the structure of both content and
custom actions and with some additional care, a JSP page can reflect quite
accurately the structure of the resulting content. A JSP document can also use
machinery like entity definitions.

The JSP 1.2 specification made a stronger distinction between JSP documents
and non-XML JSP pages. For instance standard actions like <jsp:expression>
were only available in JSP documents. The difference proved to be confusing and
distracting and the distinction has been relaxed in JSP 2.0 to facilitate the
transition from the JSP syntax to XML syntax.

JSP.1.1.4 Translation and Execution Phases

A JSP container manages two phases of a JSP page’s lifecycle. In the transla-
tion phase, the container validates the syntactic correctness of the JSP pages and tag
files and determines a JSP page implementation class that corresponds to the JSP
page. In the execution phase the container manages one or more instances of this
class in response to requests and other events.

JavaServer Pages 2.3 Specification

What Is a JSP Page 1-5

During the translation phase the container locates or creates the JSP page
implementation class that corresponds to a given JSP page. This process is
determined by the semantics of the JSP page. The container interprets the standard
directives and actions, and the custom actions referencing tag libraries used in the
page. A tag library may optionally provide a validation method acting on the
XML View of a JSP page, see below, to validate that a JSP page is correctly using
the library.

A JSP container has flexibility in the details of the JSP page implementation
class that can be used to address quality-of-service--most notably performance--
issues.

During the execution phase the JSP container delivers events to the JSP page
implementation object. The container is responsible for instantiating request and
response objects and invoking the appropriate JSP page implementation object.
Upon completion of processing, the response object is received by the container
for communication to the client. The details of the contract between the JSP page
implementation class and the JSP container are described in Chapter JSP.11, “JSP
Container”.

The translation of a JSP source page into its implementation class can occur at
any time between initial deployment of the JSP page into the JSP container and
the receipt and processing of a client request for the target JSP page.

Section JSP.1.1.9 describes how to perform the translation phase ahead of
deployment.

JSP.1.1.5 Validating JSP pages

All JSP pages, regardless of whether they are written in the traditional JSP syn-
tax or the XML syntax of JSP documents have an equivalent XML document, the
XML view of a JSP page, that is presented to tag library validators in the translation
phase for validation.

The structure of the custom actions in a JSP page is always exposed in the
XML view. This means that a tag library validator can check that, for instance,
some custom actions are only used within others.

The structure of the content used in a JSP page is exposed in greater or lesser
detail depending on whether the XML syntax or the traditional JSP syntax is used.
When using XML syntax a tag library validator can use that extra structure to, for
example, check that some actions are only used with some content, or within
some content, and, using knowledge of the semantics of the custom actions, make
assertions on the generated dynamic content.

JavaServer Pages 2.3 Specification

1-6

CORE SYNTAX AND SEMANTICS

JSP.1.1.6 Events in JSP Pages

A JSP page may indicate how some events are to be handled.

As of JSP 1.2 only init and destroy events can be described in the JSP page.
When the first request is delivered to a JSP page, a jsplnit() method, if present, will
be called to prepare the page. Similarly, a JSP container invokes a JSP’s jspDe-
stroy() method to reclaim the resources used by the JSP page at any time when a
request is not being serviced. This is the same life-cycle as for servlets.

JSP.1.1.7 JSP Configuration Information

JSP pages may be extended with configuration information that is delivered in
the JSP configuration portion of the web.xml deployment description of the web
application. The JSP configuration information includes interpretation for the tag
libraries used in the JSP files and different property information for groups of JSP
files. The property information includes: page encoding information, whether the
EL evaluation and the scripting machinery is enabled, and prelude and coda auto-
matic inclusions. The JSP configuration information can also be used to indicate that
some resources in the web application are JSP files even if they do not conform to
the default .jsp extension, and to modify the default interpretation for .jspx.

JSP.1.1.8 Naming Conventions for JSP Files

A JSP page is packaged as one or more JSP files, often in a web application, and
delivered to a tool like a JSP container, a Java EE container, or an IDE. A complete
JSP page may be contained in a single file. In other cases, the top file will include
other files that contain complete JSP pages, or included segments of pages.

It is common for tools to need to differentiate JSP files from other files. In
some cases, the tools also need to differentiate between top JSP files and included
segments. For example, a segment may not be a legal JSP page and may not
compile properly. Determining the type of file is also very useful from a
documentation and maintenance point of view, as people familiar with the .c and
.h convention in the C language know.

By default the extension .jsp means a top-level JSP file. We recommend, but
do not mandate, to differentiate between top-level JSP files (invoked directly by
the client or dynamically included by another page or servlet) and statically
included segments so that:

JavaServer Pages 2.3 Specification

What Is a JSP Page 1-7

* The .jsp extension is used only for files corresponding to top level JSP files,
forming a JSP page when processed.

* Statically included segments use any other extension. As included segments
were called ‘JSP fragments’ in past versions of this specification, the extension
Jspf was offered as a suggestion. This extension is still suggested for consis-
tency reasons, despite that they are now called ‘jsp segments’.

JSP documents, that is, JSP pages that are delivered as XML documents, use
the extension .jspx by default.

The jsp-property-group element of web.xml can be used to indicate that some
group of files, perhaps not using either of the extensions above, are JSP pages, and
can also be used to indicate which ones are delivered as XML documents.

JSP.1.1.9 Compiling JSP Pages

A JSP page may be compiled into its implementation class plus deployment
information during development (a JSP page can also be compiled at deployment
time). In this way JSP page authoring tools and JSP tag libraries may be used for
authoring servlets. The benefits of this approach include:

* Removal of the start-up lag that occurs when a container must translate a JSP
page upon receipt of the first request.

* Reduction of the footprint needed to run a JSP container, as the Java compiler
is not needed.

Compilation of a JSP page in the context of a web application provides
resolution of relative URL specifications in include directives and elsewhere, tag
library references, and translation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.

JSP.1.1.9.1 JSP Page Packaging

When a JSP page implementation class depends on support classes in addition
to the JSP 2.2 and Servlet 2.5 classes, the support classes are included in the pack-
aged WAR, as defined in the Servlet 2.5 specification, for portability across JSP con-
tainers.

Appendix , “Packaging JSP Pages contains two examples of JSP pages
packaged in WARs:

JavaServer Pages 2.3 Specification

1-8

CORE SYNTAX AND SEMANTICS

1. A JSP page delivered in source form (the most common case).

2. A JSP page translated into an implementation class plus deployment informa-
tion. The deployment information indicates support classes needed and the
mapping between the original URL path to the JSP page and the URL for the
JSP page implementation class for that page.

JSP.1.1.10 Debugging JSP Pages

In the past debugging tools provided by development environments have lacked
a standard format for conveying source map information allowing the debugger of
one vendor to be used with the JSP container of another. As of JSP 2.0, containers
must support JSR-045 (“Debugging Support for Other Languages’). Details can be
found in Section JSP.11.5, “Debugging Requirements”.

JSP.1.2 Web Applications

A web application is a collection of resources that are available at designated
URLSs. A web application is made up of some of the following:

* Java runtime environment(s) running in the server (required)

» JSP page(s) that handle requests and generate dynamic content
 Servlet(s) that handle requests and generate dynamic content

» Server-side JavaBeans components that encapsulate behavior and state

» Static HTML, DHTML, XHTML, XML and similar pages.

» Resource files used by Java classes.

* Client-side Java Applets, JavaBeans components, and Java class files
 Java runtime environment(s) (downloadable via the Plugin and Java Web

Start) running in client(s)

Web applications are described in more detail in the Servlet 2.5 specification.

A web application contains a deployment descriptor web.xml that contains
information about the JSP pages, servlets, and other resources used in the web
application. The deployment descriptor is described in detail in the Servlet 2.5
specification.

JavaServer Pages 2.3 Specification

Web Applications

JSP 2.2 requires that these resources be implicitly associated with and
accessible through a unique ServletContext instance available as the implicit appli-
cation object (see Section JSP.1.8).

The application to which a JSP page belongs is reflected in the application
object, and has impact on the semantics of the following elements:

¢ The include directive (see Section JSP.1.10.3).
* The taglib directive (see Section JSP.1.10.2).
* The jsp:include action element (see Section JSP.5.4, “<jsp:include>").

* The jsp:forward action (see Section JSP.5.5, “<jsp:forward>").

JSP 2.2 supports portable packaging and deployment of web applications
through the Servlet 2.5 specification. The JavaServer Pages specification inherits
from the servlet specification the concepts of applications, ServletContexts,
Sessions, Requests and Responses.

JSP.1.2.1 Relative URL Specifications

Elements may use relative URL specifications, called URI paths, in the Servlet
2.5 specification. These paths are as described in RFC 2396. We refer to the path
part of that specification, not the scheme, nor authority parts. Some examples are:

* A context-relative path is a path that starts with a slash (/). It is to be interpreted
as relative to the application to which the JSP page or tag file belongs. That is,
its ServletContext object provides the base context URL.

* A page relative path is a path that does not start with a slash (/). It is to be in-
terpreted as relative to the current JSP page, or the current JSP file or tag file,
depending on where the path is being used. For an include directive (see
Section JSP.1.10.3) where the path is used in a file attribute, the interpretation
is relative to the JSP file or tag file. For a jsp:include action (see
Section JSP.5.4, “<jsp:include>") where the path is used in a page attribute,
the interpretation is relative to the JSP page. In both cases the current page or
file is denoted by some path starting with / that is then modified by the new
specification to produce a path starting with /. The new path is interpreted
through the ServletContext object. See Section JSP.1.10.5 for exact details on
this interpretation.

JavaServer Pages 2.3 Specification

1-9

CORE SYNTAX AND SEMANTICS

The JSP specification uniformly interprets paths in the context of the web
container where the JSP page is deployed. The specification goes through a
mapping translation. The semantics outlined here apply to the translation-time
phase, and to the request-time phase.

JSP.1.3 Syntactic Elements of a JSP Page

This section describes the basic syntax rules of JSP pages.

JSP.1.3.1 Elements and Template Data

A JSP page has elements and template data. An element is an instance of an ele-
ment type known to the JSP container. Template data is everything else; that is, any-
thing that the JSP translator does not know about.

The type of an element describes its syntax and its semantics. If the element
has attributes, the type describes the attribute names, their valid types, and their
interpretation. If the element defines objects, the semantics includes what objects
it defines and their types.

JSP.1.3.2 Element Syntax

There are three types of elements: directive elements, scripting elements, and
action elements.

Directives

Directives provide global information that is conceptually valid independent
of any specific request received by the JSP page. They provide information for
the translation phase.

Directive elements have a syntax of the form <% @ directive...%>.

Actions

Actions provide information for the request processing phase. The interpreta-
tion of an action may, and often will, depend on the details of the specific
request received by the JSP page. An Actions can either be standard (that is.
defined in this specification), or custom (that is, provided via the portable tag
extension mechanism).

Action elements follow the syntax of an XML element. They have a start tag
including the element name, and may have attributes, an optional body, and a

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-11

matching end tag, or may be an empty tag, possibly with attributes:
<mytag attr1="attribute value”...>body</mytag>
And:

<mytag attr1="attribute value”.../>
<mytag attr1="attribute value” ...></mytag>

An element has an element type describing its tag name, its valid attributes
and its semantics. We refer to the type by its tag name.

JSP tags are case-sensitive, as in XML and XHTML.

An action may create objects and may make them available to the scripting
elements through scripting-specific variables.

Scripting Elements
Scripting elements provide “glue” around template text and actions.

The Expression Language (EL) can be used to simplify accessing data from
different sources. EL expressions can be used in JSP standard and custom
actions and template data. EL expressions use the syntax ${expr} and #{expr};
For example:

<mytag attr1="${bean.property}”.../>

${map[entry]}
<lib:myAction>${3+counter}</lib:myAction>

Chapter JSP.2, “Expression Language” provides more details on the EL.

There are three language-based types of scripting elements: declarations,
scriptlets, and expressions. Declarations follow the syntax <%! ... %>. Script-
lets follow the syntax <% ... %>. Expressions follow the syntax <%= ... %>.

JSP.1.3.3 Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start
and end in the same file. The start tag cannot be on one file while the end tag is in
another.

The same rule applies to elements in the alternate syntax. For example, a
scriptlet has the syntax <% scriptlet %>. Both the opening <% characters and the
closing %> characters must be in the same physical file.

JavaServer Pages 2.3 Specification

CORE SYNTAX AND SEMANTICS

A scripting language may also impose constraints on the placement of start
and end tags relative to specific scripting constructs. For example, Chapter JSP.9,
“Scripting” shows that Java language blocks cannot separate a start and an end
tag. See Section JSP.9.4, “Main Section” for details.

JSP.1.34 Empty Elements

Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag
As examples, the following are all empty tags:

<x:foo></x:foo>

<x:foo />

<x:foo/>

<x:foo><%-- any comment --%></x:foo>

While the following are all non-empty tags:

<foo> </foo>

<fo0><%= expression %></foo>
<foo><% scriptlet %></foo>
<foo><bar/></foo>

<foo><!-- a comment --></foo>

JSP.1.3.5 Attribute Values

Following the XML specification, attribute values always appear quoted. Either
single or double quotes can be used to reduce the need for escaping quotes; the quo-
tation conventions available are described in Section JSP.1.6. There are two types of
attribute values, literals and request-time expressions (Section JSP.1.14.1), but the
quotation rules are the same.

JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements

Until JSP 2.0, tag handlers could be passed input two ways: through attribute
values and through the element body. Attribute values were always evaluated once
(if they were specified as an expression) and the result was passed to the tag
handler. The body could contain scripting elements and action elements and be
evaluated zero or more times on demand by the tag handler.

As of JSP 2.0, page authors can provide input in new ways using the
<jsp:attribute> standard action element. Based on the configuration of the action

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-13

being invoked, the body of the element either specifies a value that is evaluated
once, or it specifies a “JSP fragment,” which represents the body in a form that
makes it possible for a tag handler to evaluate it as many times as needed. The
<jsp:attribute> action must only be used to specify an attribute value for standard
or custom actions. A translation error must occur if it is used in any other context,
for example to specify the value of template text that looks like an XML element.

It is illegal JSP syntax, which must result in a translation error, to use both an
XML element attribute and a <jsp:attribute> standard action to pass the value of
the same attribute. See Section JSP.5.10, “<jsp:attribute>" for more details on the
<jsp:attribute> standard action.

The following example uses an XML element attribute to define the value of
the param1 attribute, and uses an attribute standard action to define the value of
the param2 attribute. In this example, the value of param2 comes from the result
of a custom action invocation.

<mytag:paramTag param1="value1”>
<jsp:attribute name="param2”>
<mymath:add x="2" y="2"/>
</jsp:attribute>
</mytag:paramTag>

If a page author wishes to pass both an attribute standard action and a tag
body, the <jsp:body> standard action must be used to specify the body. A
translation error will result if the custom action invocation has <jsp:attribute>
elements but does not define the body using a <jsp:body> element. See
Section JSP.5.11, “<jsp:body>" for more details on the <jsp:body> standard
action.

The following example shows two equivalent tag invocations to the
hypothetical <mytag:formatBody> custom action. The first invocation uses an
XML element attribute to pass the values of the color and size attributes. The
second example uses an attribute standard action to pass the value of the color
attribute. Both examples have tag body containing simply the words ‘“Template
Text”.

<mytag:tagWithBody color="blue” size="12">

Template Text
</mytag:tagWithBody>

JavaServer Pages 2.3 Specification

CORE SYNTAX AND SEMANTICS

<mytag:tagWithBody size="12">
<jsp:attribute name="color’>blue</jsp:attribute>
<jsp:body>
Template Text
</jsp:body>
</mytag:tagWithBody>

<jsp:attribute> can be used with the <jsp:element> standard action to generate
dynamic content in a well structured way. The example below generates an
HTML head of some type unknown at page authoring time:

<jsp:element name="H${headLevel}">
<jsp:attribute name="size”>${headSize}</jsp:attribute>
<jsp:body>${headText}<jsp:body>

</jsp:element>

JSP.1.3.7 Valid Names for Actions and Attributes

The names for actions must follow the XML convention (i.e. must be an NMTO-
KEN as indicated in the XML 1.0 specification). The names for attributes must fol-
low the conventions described in the JavaBeans specification.

Attribute names that start with jsp, _jsp, java, or sun are reserved in this
specification.

JSP.1.3.8 White Space

In HTML and XML white space is usually not significant, but there are excep-
tions. For example, an XML file may start with the characters <?xml, and, when it
does, it must do so with no leading whitespace characters.

This specification follows the whitespace behavior defined for XML. White
space within the body text of a document is not significant, but is preserved. This
default behavior can be modified for JSP pages in standard syntax as described in
Section JSP.3.3.8, “Removing whitespaces from template text”.

Next are two examples of JSP code with their associated output. Note that
directives generate no data and apply globally to the JSP page.

Table JSP.1-1 Example 1 - Input

LineNo Source Text

1 <?xml version="1.0" ?>
2 <% @ page buffer="8kb” %>
3 The rest of the document goes here

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-15

The result is

Table JSP.1-2 Example I - Output
LineNo Output Text

1 <?xml version="1.0" 7>
2
3 The rest of the document goes here

The next two tables show another example, with input and output.,

Table JSP.1-3 Example 2 - Input

LineNo Source Text
1 <% response.setContentType(“...”");
2 whatever... %><?xml version="1.0" ?>
3 <% @ page buffer="8kb” %>
4 The rest of the document goes here

The result is

Table JSP.1-4 Example 2 - Output

LineNo Output Text

1 <?xml version="1.0" 7>
2
3 The rest of the document goes here

As of JSP 2.1, it is possible to have extraneous whitespaces removed from
template text through element trim-directive-whitespaces of JSP Property Groups
(See Section JSP.3.3.8, “Removing whitespaces from template text”), or the page
and tag file directive attribute trimDirectiveWhitespaces (See Section JSP.1.10.1,
“The page Directive”, Section JSP.8.5.1, “The tag Directive”).

JSP.1.3.9 JSP Documents

A JSP page is usually passed directly to a JSP container. A JSP Document is a
JSP page that is also an XML document. When a JSP document is encountered by
the JSP container, it is interpreted as an XML document first and after that as a JSP
page. Among the consequences of this are:

JavaServer Pages 2.3 Specification

CORE SYNTAX AND SEMANTICS

* The document must be well-formed

* Validation, if indicated

* Entity resolution will apply, if indicated
* <% style syntax cannot be used

JSP documents are often a good match for the generation of dynamic XML
content as they can preserve much of the structure of the generated document.

The default convention for JSP documents is .jspx. There are configuration
elements that can be used to indicate that a specific file is a JSP document.

See Chapter JSP.6, “JSP Documents” for more details on JSP documents, and
Chapter JSP.3, “JSP Configuration” for more details on configuration.

JSP.1.3.10 JSP Syntax Grammar

This section presents a simple EBNF grammar for the JSP syntax. The grammar
is intended to provide a concise syntax overview and to resolve any syntax ambigu-
ities present in this specification. Other sections may apply further restrictions to this
syntax, for example to restrict what represents a valid attribute value for a page
directive. In all other cases the grammar takes precedence in resolving syntax ques-
tions.

The notation for this grammar is identical to that described by Chapter 6 of
the XML 1.0 specification, available at the following URL:

http://www.w3c.org/TR/2000/REC-xmI-200010064#sec-notation

In addition, the following notes and rules apply:

* The root production for a JSP page is JSPPage.

* The prefix XML:: is used to refer to an EBNF definition in the XML 1.0 speci-
fication. Refer to http://www.w3.org/TR/REC-xml.

* Where applicable, to resolve grammar ambiguities, the first matching produc-
tion must always be followed. This is commonly known as the “greedy” algo-
rithm.

* If the <TRANSLATION_ERROR> production is followed, the page is invalid,
and the result will be a translation error.

* Many productions make use of XML-style attributes. These attributes can ap-
pear in any order, separated from each other by whitespace, but no attribute
can be repeated more than once. To make these XML-style attribute specifica-

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page

tions more concise and easier to read, the syntax ATTR[attrsef] is used in the
EBNF to define a set of XML attributes that are recognized in a particular pro-
duction.

Within the square brackets (attrset) is listed a comma-separated list of case-
sensitive attribute names that are valid. Each attribute name represents a sin-
gle XML attribute. If the attribute name is prefixed with an =, the production
Attribute (defined below) must be matched (either a rtexprvalue or a static
value is accepted). If not, the production NonRTAttribute must be matched
(only static values are accepted). If the attribute name is prefixed with a !, the
attribute is required and must appear in order for this production to be
matched. If an attribute that matches the Attribute production with a name not
listed appears adjacent to any of the other attributes, the production is not
matched.
For example, consider a production that contains ATTR[Iname, =value,
=lrepeat]. This production is matched if and only if all of the following hold
true:
* The name attribute appears exactly once and matches the NonRTAttribute
production.
* The value attribute appears at most once. If it appears, the Attribute produc-
tion must be matched.
* The repeat attribute appears exactly once and matches the Attribute produc-
tion.
e There must be no other attributes aside from name, value, or repeat.

For example, the following sample strings match the above:
* name="somename” value="somevalue” repeat="2"
* repeat="%{ x + y }” name="othername”

JSP.1.3.10.1 EBNF Grammar for JSP Syntax

JSPPage = Body
JSPTagDef = Body
Body = AlIBody | ScriptlessBody

[ve: ScriptingEnabled]
[ve: ScriptlessBody]

JavaServer Pages 2.3 Specification

AllIBody a=

ScriptlessBody

1l
—

—_—_— — — — —

)*

(‘<
(<% @’

(‘<jsp:directive’
(‘<%V

(‘<jsp:declaration’
(‘<%=

(‘<jsp:expression’
(<%’

(f <Jsp scriptlet’
('$
(‘#
(f
(f
(f
(‘<

<Jsp text’
<jsp*’

TemplateText

(‘<%--’
(‘<%@’
(‘<jsp:directive.
(‘<

(‘

<%V <TRANSLATION_ERROR>

<jsp:declaration’

CORE SYNTAX AND SEMANTICS

JSPCommentBody)
DirectiveBody)
XMLDirectiveBody)
DeclarationBody)
XMLDeclarationBody)
ExpressionBody)
XMLExpressionBody)
ScriptletBody)
XMLScriptletBody)
ELExpressionBody)
ELExpressionBody)
XMLTemplateText)
StandardAction)
ExtraClosingTag)
CustomAction

CustomActionBody)

JSPCommentBody
DirectiveBody
XMLDirectiveBody

~ — ~— ~—

<TRANSLATION_ERROR>)
(‘<%= <TRANSLATION_ERROR>)

(‘<jsp:expression’

<TRANSLATION_ERROR>)
(<%’ <TRANSLATION_ERROR>)

(‘<jsp:scriptlet’

<TRANSLATION_ERROR>

<jsp-’

(‘S

(‘#

(° <Jsp text’
(f

(</’

(<

TemplateText

[ve: ELEnabled]

JavaServer Pages 2.3 Specification

ELExpressionBody
ELExpressionBody
XMLTemplateText
StandardAction
ExtraClosingTag
CustomAction
CustomActionBody)

~— ~— — ~— ~— ~—

Syntactic Elements of a JSP Page

TemplateTextBody = (

)*

(‘<%--’ JSPCommentBody
(‘<%@’ DirectiveBody
(‘<jsp:directive. XMLDirectiveBody
(‘<% <TRANSLATION_ERROR>
(‘<jsp:declaration’

<TRANSLATION_ERROR>
(<%=’ <TRANSLATION_ERROR>
(‘<jsp:expression’

<TRANSLATION_ERROR>
(<%’ <TRANSLATION_ERROR>
(‘<jsp:scriptlet’

<TRANSLATION_ERROR>
(‘${ <TRANSLATION_ERROR>
(‘#{ <TRANSLATION_ERROR>
(‘<jsp:text’ <TRANSLATION_ERROR>
(‘<jsp:’ <TRANSLATION_ERROR>
(‘< CustomAction

<TRANSLATION_ERROR>

TemplateText

[ve: ELEnabled]

JSPCommentBody

(Char* - (Char* -%>’)) “~-%>’

| <TRANSLATION_ERROR>

DirectiveBody

JSPDirectiveBody | TagDefDirectiveBody

[ve: TagFileSpecificDirectives]

XMLDirectiveBody

XMLJSPDirectiveBody | XMLTagDefDirectiveBody

[ve: TagFileSpecificXMLDirectives]

JSPDirectiveBody ::= S?
((‘page’ S PageDirectiveAttrList)
| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)
)
S? ‘%>’

| <TRANSLATION_ERROR>

JavaServer Pages 2.3 Specification

~—~ — ~— ~—

~— — ~— ~— ~—

1-20

XMLJSPDirectiveBody::=

TagDefDirectiveBody::=

XMLTagDefDirectiveBody::=

PageDirectiveAttrList::= ATTR][

CORE SYNTAX AND SEMANTICS

‘page’ S PageDirectiveAttrList S?
(/1 (> S?ETag))

| (finclude’ S IncludeDirectiveAttrList S?
(/>"1 (> S?ETag))
)

)
<TRANSLATION_ERROR>

S?
((tag’ S TagDirectiveAttrList)
| (‘taglib’ S TagLibDirectiveAttrList)
| (f‘include’ S IncludeDirectiveAttrList)
| (‘attribute’ S AttributeDirectiveAttrList)
| (‘variable’ S VariableDirectiveAttrList)
)
S? ‘%>’

<TRANSLATION_ERROR>
((‘tag’ S TagDirectiveAttrList S?
(/> 1 (> S?ETag))

‘include’ S IncludeDirectiveAttrList S?
(> (>S?ETag))
)
| (‘attribute’ S AttributeDirectiveAttrList S?
(/>"1 (> S?ETag))
)
| (‘variable’ S VariableDirectiveAttrList S?
(/51 (> S?ETag))
)

)
<TRANSLATION_ERROR>

language, extends, import, session,
buffer, autoFlush, isThreadSafe,

info, errorPage, isErrorPage,
contentType, pageEncoding,
isELIgnored]

[ve: PageDirectiveUniqueAttr]

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-21

TagLibDirectiveAttrList::= ATTRJ luri, 'prefix]
| ATTR] !tagdir, !prefix]
[ve: TagLibDirectiveUniquePrefix]

IncludeDirectiveAttrList::=ATTR[[file]

TagDirectiveAttrList ::= ATTR[display-name, body-content,
dynamic-attributes, small-icon, large-icon,
description, example, language,
import, pageEncoding, isELIgnored]

[vc: TagDirectiveUniqueAttr]

AttributeDirectiveAttrList::=ATTR[Iname, required, fragment, rtexprvalue,
type, description]
[vc: UniqueAttributeName |

VariableDirectiveAttrList::= ATTR[!name-given, variable-class,
scope, declare, description]
| ATTR[!name-from-attribute, !alias,
variable-class,
scope, declare, description]
[ve: UniqueVariableName]

DeclarationBody = (Char* - (Char* “%>")) ‘%>’
| <TRANSLATION_ERROR>

XMLDeclarationBody::= (S?5")
[(S?7%

((Char* - (Char* ‘<*)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

(Char* - (Char* “%>")) ‘%>’
| <TRANSLATION_ERROR>
[ve: ExpressionBodyContent]

ExpressionBody

XMLExpressionBody::= (S?757)
I (S?7%

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

[ve: ExpressionBodyContent]

JavaServer Pages 2.3 Specification

ELExpressionBody

ELExpression

ScriptletBody

XMLScriptletBody

StandardAction

StdActionContent

StdActionBody

EmptyBody

TagDependentActionBody ::=

TagDependentBody ::

CORE SYNTAX AND SEMANTICS

ELExpression ¥
| <TRANSLATION_ERROR>

[See EL spec document, production Expression]

(Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>

(S?75)

I (S?7%
((Char* - (Char* ‘<’)) CDSect?)*

ETag

)
| <TRANSLATION_ERROR>

<TRANSLATION_ERROR>
vc: TagFileSpecificActions]

(‘'useBean’ StdActionContent)
| (‘setProperty’ StdActionContent)
| (‘getProperty’ StdActionContent)
I (‘include’ StdActionContent)
| (‘forward’ StdActionContent)
I (‘plugin’ StdActionContent)
| (‘invoke’ StdActionContent)
| (‘doBody’ StdActionContent)
[(‘element’ StdActionContent)
[(‘output’ StdActionContent)
I
[

Attributes StdActionBody
[ve: StdActionAttributesValid]

EmptyBody
| OptionalBody
| ParamBody
| PluginBody
[ve: StdActionBodyMatch]

(/>1
I (> ETag)
| (>’ S? ‘<jsp:attribute’ NamedAttributes ETag)

JspAttributeAndBody
| (‘> TagDependentBody ETag)

Char* - (Char* ETag)

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page

JspAttributeAndBody::

ActionBody

ScriptlessActionBody::

OptionalBody

ScriptlessOptionalBod

y:

>’ 87 (‘<jsp:attribute’NamedAttributes)?
‘<jsp:body’

(JspBodyBody I<TRANSLATION_ERROR>)
S? ETag

JspAttributeAndBody
(>’ Body ETag)

JspAttributeAndBody
(">’ ScriptlessBody ETag)

EmptyBody | ActionBody

:=EmptyBody | ScriptlessActionBody

TagDependentOptionalBody::= EmptyBody | TagDependentActionBody

ParamBody

PluginBody

NamedAttributes

AttributeBody

EmptyBody
(>’ 8? (‘<jsp:attribute’ NamedAttributes)?
‘<jsp:body’

(JspBodyParam | <TRANSLATION_ERROR>)
S? ETag

)
(S? ‘>’ Param* ETag)

EmptyBody

(> S? (‘<jsp:attribute’ NamedAttributes)?
‘<jsp:body’
(JspBodyPluginTags

| <TRANSLATION_ERROR>
)
S? ETag

)
(>’ S? PluginTags ETag)

AttributeBody S? (‘<jsp:attribute’ AttributeBody S?)*

ATTR[!name, trim] S?
(fs
| ‘></jsp:attribute>’
| >’ AttributeBodyBody ‘</jsp:attribute>’
| <TRANSLATION_ERROR>

JavaServer Pages 2.3 Specification

1-23

1-24 CORE SYNTAX AND SEMANTICS

AttributeBodyBody ::= AllIBody

| ScriptlessBody

| TemplateTextBody

[vec: AttributeBodyMatch]
JspBodyBody = (S? JspBodyEmptyBody)

| (S? ‘>’ (JspBodyBodyContent - ©) ‘</jsp:body>")

JspBodyBodyContent::= ScriptlessBody | Body | TagDependentBody
[ve: JspBodyBodyContent]

JspBodyEmptyBody n= >
| ‘></jsp:body>’
| <TRANSLATION_ERROR>

JspBodyParam S? >’ §? Param* ‘</jsp:body>’

JspBodyPluginTags :

S? >’ §? PluginTags ‘</jsp:body>’

PluginTags = (‘<jsp:params’ Params S?)?
(‘<jsp:fallback’ Fallback S?)?
Params n= 5’ 8?

((‘<jsp:body>’
((S? Param+ S? ‘</jsp:body>’")
| <TRANSLATION_ERROR>
)
)

| Param+

)

‘</jsp:params>’

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-25

Fallback = >
I (> S?‘<jsp:body>’
((S?
(Char* - (Char* ‘</jsp:body>"))
‘</jsp:body>" S?
)
| <TRANSLATION_ERROR>
)
‘</jsp:fallback>’
)
I (e

(Char* - (Char* ’</jsp:fallback>"))
‘</jsp:fallback>’
)

Param = ’<jsp:param’ StdActionContent

Attributes = (S Attribute)* S?
[ve: UniqueAttSpec]

CustomAction TagPrefix ;" CustomActionName

[ve: CustomActionMatchesAndValid]

TagPrefix = Name

CustomActionName ::= Name

CustomActionBody (Attributes CustomActionEnd)

| <TRANSLATION_ERROR>

CustomActionEnd

CustomActionTagDependent
| CustomActiondSPContent
| CustomActionScriptlessContent

CustomActionTagDependent::= TagDependentOptionalBody
[ve: CustomActionTagDependentMatch]

CustomActiondSPContent::= OptionalBody
[ve: CustomActiondSPContentMatch]

CustomActionScriptlessContent::= ScriptlessOptionalBody
[ve: CustomActionScriptlessContentMatch]

JavaServer Pages 2.3 Specification

1-26 CORE SYNTAX AND SEMANTICS

TemplateText u= (<" TS T#{")
| (TemplateChar* -
(TemplateChar* (‘<1 ‘${" 1 ‘#{")))

TemplateChar = \$’
[
| <\%’
| Char
[ve : QuotedDollarMatched]

XMLTemplateText ::= (S?757)
I (S?%
((Char*-(Char* (‘<" I'${"1'#{")))
((‘${* ELExpressionBody)?
| (‘#{" ELExpressionBody)?
)
CDSect?
)* ETag

)
| <TRANSLATION_ERROR>

[ve: ELEnabled]

ExtraClosingTag = ETag
[ve: ExtraClosingTagMatch]

ETag = ‘</ TagPrefix ” Name S? >’
[ve: ETagMatch]
Attribute ::= Name Eq
((“<%=" RTAttributeValueDouble)
| (“<%="RTAttributeValueSingle)
[AttributeValueDouble)
[AttributeValueSingle)
)
NonRTAttribute = Name Eq
((o AttributeValueDouble)
[AttributeValueSingle)
)
AnyAttributeValue ::= AttributeValue | RTAttributeValue
AttributeValue = AttributeValueDouble | AttributeValueSingle
RTAttributeValue == RTAttributeValueDouble | RTAttributeValueSingle

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-27

AttributeValueDouble::

AttributeValueSingle :

RTAttributeValueDouble::

(QuotedChar - ™7)*
(™ | <TRANSLATION_ERROR>)

(QuotedChar - “”)*
(“” 1 <TRANSLATION_ERROR>)

= ((QuotedChar - ™)* -
((QuotedChar - "™)* "%>")
)
('%>""| <TRANSLATION_ERROR>)
[ve: RTAttributeScriptingEnabled]
[ve: ExpressionBodyContent]

RTAttributeValueSingle::= ((QuotedChar - “”)* -

Name =
Char =

QuotedChar n=

S =
Eq n=

CDSect =

((QuotedChar - “”)* "%>’)
)
("%>" | <TRANSLATION_ERROR>)
[ve: RTAttributeScriptingEnabled]
[ve: ExpressionBodyContent]

XML::Name
XML::Char

‘'’
| ’"

[W

[\

[

I A$

[W

| (‘${' ELExpressionBody)
| (‘#{" ELExpressionBody)
| Char

[ve: QuotedDollarMatched]

XML::S
XML::Eq

XML::CDSect

JavaServer Pages 2.3 Specification

1-28 CORE SYNTAX AND SEMANTICS

JSP.1.3.10.2 Validity Constraints

The following validity constraints are referenced in the above grammar using the syn-
tax [ve: ValidityConstraint], and must be followed:

* ScriptingEnabled - The ScriptlessBody production must be followed if scripting
is disabled for this translation unit. See the scripting-invalid JSP Configuration
element (Section JSP.3.3.3, “Disabling Scripting Elements”).

* ScriptlessBody - The AllBody production cannot be followed if one of our par-
ent nodes in the parse tree is a ScriptlessBody production. That is, once we
have followed the ScriptlessBody production, until that production is complete
we cannot choose the AllBody production.

* ELEnabled - The token ${ or #{ is not followed if expressions are disabled for
this translation unit. See the isELIgnored page and tag directive
(Section JSP.1.10.1 and Section JSP.8.5.1, “The tag Directive” respectively)
and the el-ignored JSP Configuration element (Section JSP.3.3.2, “Deactivat-
ing EL Evaluation”).

 TagFileSpecificDirectives - The JSPDirectiveBody production must be followed
if the root production is JSPPage (i.e. this is a JSP page). The TagDefDirec-
tiveBody production must be followed if the root production is JSPTagDef (i.e.
this is a tag file).

* TagFileSpecificXMLDirectives - The XMLJSPDirectiveBody production must be
followed if the root production is JSPPage (i.e. this is a JSP page). The XMLT-
agDefDirectiveBody production must be followed if the root production is
JSPTagDef (i.e. this is a tag file).

* PageDirectiveUniqueAttr - A translation error will result if there is more than
one occurrence of any attribute defined by this directive in a given translation
unit, and if the value of the attribute is different than the previous occurrence.
No translation error results if the value is identical to the previous occurrence.
In addition, the import and pageEncoding attributes are excluded from this
constraint (see Section JSP.1.10.1).

* TagLibDirectiveUniquePrefix - A translation error will result if the prefix At-
tributeValue has already previously been encountered as a potential TagPrefix
in this translation unit.

* TagDirectiveUniqueAttr - A translation error will result if the prefix of this tag
directive is already defined in the current scope, and if that prefix is bound to a
namespace other than that specified by the uri or tagdir attribute.

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-29

¢ UniqueAttributeName - A translation error will result if there are two or more
attribute directives with the same value for the name attribute in the same
translation unit. A translation error will result if there is a variable directive
with a name-given attribute equal to the value of the name attribute of an at-
tribute directive in the same translation unit.

¢ UniqueVariableName - A translation error must occur if more than one variable
directive appears in the same translation unit with the same value for the
name-given attribute or the same value for the name-from-attribute attribute. A
translation error must occur if there is a variable directive with a name-given
attribute equal to the value of the name attribute of an attribute directive in the
same translation unit. A translation error must occur if there is a variable di-
rective with a name-from-attribute attribute whose value is not equal to the
name attribute of an attribute directive in the same translation unit that is also
of type java.lang.String, that is required and that is not an rtexprvalue. A trans-
lation error must occur if the value of the alias attribute is equal to the value of
a name-given attribute of a variable directive, or the value of the name attribute
of an attribute directive in the same translation unit.

 TagFileSpecificActions - The invoke and doBody standard actions are only
matched if the JSPTagDef production was followed (i.e. if this is a tag file in-
stead of a JSP page).

¢ RTAttributeScriptingEnabled - If the RTAttributeValueDouble or RTAttributeVal-
ueSingle productions are visited during parsing and scripting is disabled for
this page, a translation error must be produced. See the scripting-invalid JSP
Configuration element (Section JSP.3.3.3, “Disabling Scripting Elements”).

* ExpressionBodyContent - A translation error will result if the body content mi-
nus the closing delimiter (%>, or </jsp:expression>, depending on how the ex-
pression started) does not represent a well-formed expression in the scripting
language selected for the JSP page.

 StdActionAttributesValid - An attribute is considered “provided” for this stan-
dard action if either the Attribute production or the AttributeBody production is
followed in the context of the enclosing StandardAction production. A transla-
tion error will result if any of the following conditions is true:

= The set of attributes “provided” for this standard action does not match one
of the valid attribute combinations specified in Table JSP.1-5.

= The same attribute is “provided” more than once, as determined by the at-
tribute name.

JavaServer Pages 2.3 Specification

1-30

CORE SYNTAX AND SEMANTICS

= An attribute is “provided” using the AttributeBody production that does not
accept a request-time expression value, as indicated by the = prefix in Table
JSP.1-5.

* StdActionBodyMatch - The StdActionBody production will only be matched if

the production listed for this standard action in the “Body Production” column
in Table JSP.1-5 is followed.

AttributeBodyMatch - The type of element being specified determines which
production is followed (see Section JSP.5.10, “<jsp:attribute>"for details):

= If a custom action that specifies an attribute of type JspFragment, Scriptless-
Body must be followed.

= If a standard or custom action that accepts a request-time expression value,
AllJspBody must be followed.

= If a standard or custom action that does not accept a request-time expression
value, TemplateTextBody must be followed.

JspBodyBodyContent - The ScriptlessBody production must be followed if the
body content for this tag is scriptless. The Body production must be followed
if the body content for this tag is JSP. The TagDependentBody production
must be followed if the body content for this tag is tagdependent.

UniqueAttSpec - A translation error will result if the same attribute name ap-
pears more than once.

CustomActionMatchesAndValid - Following the rules in Section JSP.7.3, “The
Tag Library Descriptor” for determining the relevant set of tags and tag librar-
ies, assume the following:

= Let U be the URI indicated by the uri AttributeValue of the previously encoun-
tered TagLibDirectiveAttrList with prefix matching the TagPrefix for this poten-
tial custom action, or nil if no such TagLibDirectiveAttrList was encountered in
this translation unit.

= If Uis not nil, let L be the <taglib> element in the relevant TLD entry such that
L.uri is equal to U.

Then:

= If, after being parsed, the CustomAction production is matched (not yet tak-
ing into account the following rules), TagPrefix is considered a potential Tag-
Prefix in this translation unit for the purposes of the
TagLibDirectiveUniquePrefix validity constraint.

= The CustomAction production will not be matched if U is nil or if the TagPre-
fix does not match the prefix AttributeValue of a TagLibDirectiveAttrList previ-

JavaServer Pages 2.3 Specification

Syntactic Elements of a JSP Page 1-31

ously encountered in this translation unit.

» Otherwise, if the CustomAction production is matched, a translation error
will result if there does not exist a <tag> element T in a relevant TLD such
that L.T.name is equal to CustomActionName.

* CustomActionTagDependentMatch - Assume the definition of L from the Cus-
tomActionMatchesAndValid validity constraint above. The CustomAction-
TagDependent production is not matched if there does not exist a <tag>
element T in a relevant TLD such that L.T.body-content contains the value
tagdependent.

* CustomActionJSPContentMatch - Assume the definition of L from the Custom-
ActionMatchesAndValid validity constraint above. The CustomActionJSPCon-
tent production is not matched if there exists a <tag> element T in a relevant
TLD such that L.T.body-content does not contain the value JSP.

¢ CustomActionScriptlessContentMatch - Assume the definition of L from the
CustomActionMatchesAndValid validity constraint above. The CustomAction-
ScriptlessContent production is not matched if there does not exist a <tag> el-
ement T in a relevant TLD such that L.T.body-content contains the value
scriptless.

* QuotedDollarMatch - The \$’ or ‘# token is only matched if EL is enabled
for this translation unit. See Section JSP.3.3.2, “Deactivating EL. Evaluation”.

¢ ETagMatch - Assume the definition of U from the CustomActionMatchesAnd-
Valid validity constraint. If TagPrefix is not ‘jsp’ and U is nil, the ETag produc-
tion is not matched. Otherwise, the ETag production is matched and a
translation error will result if the prefix and name of this closing tag does not
match the prefix and name of the starting tag at the corresponding nesting lev-
el, or if there is no corresponding nesting level (i.e. too many closing tags).
This is similar to the way XML is defined, except that template text that looks
like a closing element with an unrecognized prefix is allowed in the body of a
custom or standard action. In the following example, assuming ‘my’ is a valid
prefix and ‘indent’ is a valid tag, the tag is considered template text, and
no translation error is produced:

<my:indent level="2">

</my:indent>

JavaServer Pages 2.3 Specification

1-32 CORE SYNTAX AND SEMANTICS

The following example, however, would produce a translation error, assuming
‘my’ is a valid prefix and ‘indent’ is a valid tag, and regardless of whether
‘othertag’ is a valid tag or not.

<my:indent level="2">
</my:othertag>
</my:indent>

* ExtraClosingTagMatch - The ExtraClosingTag production is not matched if en-
countered within two or more nested Body productions (e.g. if encountered in-
side the body of a standard or custom action).

JSP.1.3.10.3 Standard Action Attributes

Table JSP.1-5 specifies, for each standard action element, the bodies and the
attribute combinations that are valid. The value in the “Body Production” column
specifies a production name that must be matched for the body of the standard
action to be considered valid. The value in the “Valid Attribute Combinations”
column uses the same syntax as the attrset notation described at the start of
Section JSP.1.3.10, and indicates which attributes can be provided. Note that for
some valid attribute combinations, there are differing body productions. The first
attribute combination to be matched selects the valid body production for this
standard action invocation.

Table JSP.1-5 Valid body content and attributes for Standard Actions

Element Body Production Valid Attribute Combinations

jsp:useBean OptionalBody (lid, scope, !class)
OptionalBody (lid, scope, !type)
OptionalBody (lid, scope, !class, !type)
OptionalBody (lid, scope, =!beanName, !type)

jsp:setProperty EmptyBody ('name, !property, param)
EmptyBody ('name, !property, =!value)

jsp:getProperty EmptyBody ('name, !property)

jsp:include ParamBody (=!page, flush)

jsp:forward ParamBody (='page)

JavaServer Pages 2.3 Specification

Error Handling

1-33

Table JSP.1-5 Valid body content and attributes for Standard Actions

jsp:plugin PluginBody ("type, !code, Icodebase, align,
archive, =height, hspace,
jreversion, name, vspace, title,
=width, nspluginurl, iepluginurl,
mayscript)
jsp:invoke EmptyBody ('fragment, !var, scope)
EmptyBody ('fragment, !varReader, scope)
EmptyBody ('fragment)
jsp:doBody EmptyBody ('var, scope)
EmptyBody ('varReader, scope)
EmptyBody 0
jsp:element OptionalBody (=name)
jsp:output EmptyBody (omit-xml-declaration)
EmptyBody (omit-xml-declaration,
!doctype-root-element,
ldoctype-system, doctype-public)
jsp:param EmptyBody ('name, =lvalue)

JSP.1.4 Error Handling

Errors may occur at translation time or at request time. This section describes
how errors are treated by a compliant implementation.

JSP.14.1 Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implemen-
tation class by a JSP container can occur at any time between initial deployment of
the JSP page into the JSP container and the receipt and processing of a client request
for the target JSP page. If translation occurs prior to the receipt of a client request for
the target JSP page, error processing and notification is implementation dependent
and not covered by this specification. In all cases, fatal translation failures shall
result in the failure of subsequent client requests for the translation target with the
appropriate error specification: For HT'TP protocols the error status code 500
(Server Error) is returned.

JavaServer Pages 2.3 Specification

1-34

CORE SYNTAX AND SEMANTICS

JSP.14.2 Request Time Processing Errors

During the processing of client requests, errors can occur in either the body of
the JSP page implementation class, or in some other code (Java or other implemen-
tation programming language) called from the body of the JSP page implementation
class. Runtime errors occurring are realized in the page implementation, using the
Java programming language exception mechanism to signal their occurrence to
caller(s) of the offending behavior'.

These exceptions may be caught and handled (as appropriate) in the body of
the JSP page implementation class.

Any uncaught exceptions thrown in the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the
errorPage URL specified by the JSP page (or the implementation default behavior,
if none is specified).

Information about the error is passed as javax.servlet.ServletRequest attributes
to the error handler, with the same attributes as specified by the Servlet
specification. Names starting with the prefixes java and javax are reserved by the
different specifications of the Java platform. The javax.servlet prefix is reserved
and used by the servlet and JSP specifications.

JSP.14.3 Using JSPs as Error Pages

A JSP is considered an Error Page if it sets the page directive’s isErrorPage
attribute to true. If a page has isErrorPage set to true, then the “exception” implicit
scripting language variable (see Table JSP.1-7) of that page is initialized. The
variable is set to the value of the javax.servlet.error.exception request attribute
value if present, otherwise to the value of the javax.servlet.jsp.jspException request
attribute value (for backwards compatibility for JSP pages pre-compiled with a
JSP 1.2 compiler).

In addition, an ErrorData instance must be initialized based on the error
handler ServletRequest attributes defined by the Servlet specification, and made
available through the PageContext to the page. This has the effect of providing
easy access to the error information via the Expression Language. For example, an

" Note that this is independent of scripting language. This specification re-
quires that unhandled errors occurring in a scripting language environ-
ment used in a JSP container implementation to be signalled to the JSP
page implementation class via the Java programming language exception
mechanism.

JavaServer Pages 2.3 Specification

Comments

Error Page can access the status code using the syntax ${pageContext.error-
Data.statusCode}. See Chapter JSP.12, “Core API” for details.

By default, a JSP error page sets the status code of the response to the value of
${pageContext.errorData.statusCode} (which is equal to 500 by default), but may
set it to a different value (including 200) as it sees fit.

A JSP container must detect if a JSP error page is self-referencing and throw a
translation error.

JSP.1.5 Comments

There are different types of comments available in JSP pages in standard syntax
and JSP documents (in XML syntax).

JSP.1.5.1 Comments in JSP Pages in Standard Syntax

There are two types of comments in a JSP page: comments to the JSP page
itself, documenting what the page is doing; and comments that are intended to
appear in the generated document sent to the client.

JSP.1.5.1.1 Generating Comments in Qutput to Client

In order to generate comments that appear in the response output stream to the
requesting client, the HTML and XML comment syntax is used, as follows:

<l-- comments ... -->

These comments are treated as uninterpreted template text by the JSP
container. Dynamic content that appears within HTML/XML comments, such as
actions, scriptlets and expressions, is still processed by the container. If the
generated comment is to have dynamic data, this can be obtained through an
expression syntax, as in:

<!-- comments <%= expression %> more comments ... -->

JSP.1.5.1.2 JSP Comments

A JSP comment is of the form

<%-- anything but a closing --%> ... --%>

JavaServer Pages 2.3 Specification

1-35

1-36

CORE SYNTAX AND SEMANTICS

The body of the content is ignored completely. Comments are useful for
documentation but also are used to “comment out” some portions of a JSP page.
Note that JSP comments do not nest.

An alternative way to place a comment in JSP is to use the comment
mechanism of the scripting language. For example:

<% [** this is a comment ... **/ %>

JSP.1.5.2 Comments in JSP Documents

Comments in JSP documents use the XML syntax, as follows:
<!--comments ... ->

The body of the content is ignored completely. Comments in JSP documents
may be used for documentation purposes and for “commenting out” portions of a
JSP page.

Comments in JSP documents do not nest.

JSP.1.6 Quoting and Escape Conventions

The following quoting conventions apply to JSP pages.

Note — The current quoting rules do not allow for quoting special characters
such as \n - the only current way to do this in a JSP is with a Java expression.

Quoting in EL Expressions

= There is no special quoting mechanism within EL expressions; use a literal
‘${* if the literal ${ is desired and expressions are enabled for the page (simi-
larly, use a literal ‘#{ if the literal #{ is desired).For example, the evaluation
of ${'${'} is ‘${". Note that ${}'} is legal, and simply evaluates to ‘}.

Quoting in Scripting Elements

= A literal %> is quoted by %\>

JavaServer Pages 2.3 Specification

Quoting and Escape Conventions

Quoting in Template Text

A literal <% is quoted by <\%

Only when the EL is enabled for a page (see Section JSP.3.3.2, “Deactivating
EL Evaluation”), a literal $ can be quoted by \$, and a literal # can be quoted
by \#. This is not required but is useful for quoting EL expressions.

Quoting in Attributes

Quotation is done consistently regardless of whether the attribute value is a
literal or a request-time attribute expression. Quoting can be used in attribute
values regardless of whether they are delimited using single or double quotes. It is
only required as described below.

= A ‘is quoted as \'. This is required within a single quote-delimited attribute

value.

= A “is quoted as \". This is required within a double quote-delimited attribute

value.
A\ is quoted as \\

Only when the EL is enabled for a page (see Section JSP.3.3.2, “Deactivating
EL Evaluation”), a literal $ can be quoted by \$. Similarly, a literal # can be
quoted by \#. This is not required but is useful for quoting EL expressions.

A %> is quoted as %\>
A <% is quoted as <\%

The entities ' and " are available to describe single and double
quotes.

Examples

The following line shows an illegal attribute values.

<mytags:tag value="<%= "hil" %>" />

The following line shows a legal scriptlet, but perhaps with an intended value.
The result is Joe said %\> not Joe said %>.

<%= "Joe said %\\>" %>

The next lines are all legal quotations.

JavaServer Pages 2.3 Specification

1-37

1-38 CORE SYNTAX AND SEMANTICS

<%= "Joe said %/>" %>
<%= "Joe said %\>" %>

<% String joes_statement = "hi!"; %>
<%= "Joe said \"" + joes_statement + "\"." %>
<x:tag value='<%="Joe said \"" + joes_statement + "\"."%>"/>

<x:tag value='<%= "hil" %>' />

<x:tag value="<%=\"hil\" %>" />

<x:tag value='<%= \"name\" %>' />

<x:tag value="<%=\"Joe said 'hello’\" %>"/>
<x:tag value="<%=\"Joe said \\"hello\\" \" %>"/>
<x:tag value="end expression %\>"/>

<% String s="abc"; %>
<x:tag value="<%= s + \"def\" + \"jk\" + 'm' + \'n\' %>" />
<x:tag value='<%= s + \"def\" + "jkI" + \'m\' + \'n\' %>' />

XML Documents

The quoting conventions are different from those of XML. See Chapter JSP.6,
“JSP Documents”.

JSP.1.7 Overall Semantics of a JSP Page

A JSP page implementation class defines a _jspService() method mapping from
the request to the response object. Some details of this transformation are specific to
the scripting language used (see Chapter JSP.9, “Scripting”). Most details are not
language specific and are described in this chapter.

The content of a JSP page is devoted largely to describing the data that is
written into the output stream of the response. (The JSP container usually sends
this data back to the client.) The description is based on a JspWriter object that is
exposed through the implicit object out (see Section JSP.1.8.3, “Implicit
Objects”). Its value varies:

* Initially, out is a new JspWriter object. This object may be different from the
stream object returned from response.getWriter(), and may be considered to be
interposed on the latter in order to implement buffering (see

JavaServer Pages 2.3 Specification

Objects

Section JSP.1.10.1, “The page Directive”). This is the initial out object. JSP
page authors are prohibited from writing directly to either the PrintWriter or
OutputStream associated with the ServletResponse.

¢ The JSP container should not invoke response.getWriter() until the time when
the first portion of the content is to be sent to the client. This enables a number
of uses of JSP, including using JSP as a language to “glue” actions that deliver
binary content, or reliably forwarding to a servlet, or change dynamically the
content type of the response before generating content. See Chapter JSP4,
“Internationalization Issues”.

* Within the body of some actions, out may be temporarily re-assigned to a dif-
ferent (nested) instance of a JspWriter object. Whether this is the case depends
on the details of the action’s semantics. Typically the content of these tempo-
rary streams is appended to the stream previously referred to by out, and out is
subsequently re-assigned to refer to the previous (nesting) stream. Such nest-
ed streams are always buffered, and require explicit flushing to a nesting
stream or their contents will be discarded.

* If the initial out JspWriter object is buffered, then depending upon the value of
the autoFlush attribute of the page directive, the content of that buffer will ei-
ther be automatically flushed out to the ServletResponse output stream to ob-
viate overflow, or an exception shall be thrown to signal buffer overflow. If the
initial out JspWriter is unbuffered, then content written to it will be passed di-
rectly through to the ServletResponse output stream.

A JSP page can also describe what should happen when some specific events
occur. In JSP 2.2, the only events that can be described are the initialization and
the destruction of the page. These events are described using “well-known method
names” in declaration elements. (See Section JSP.11.1.1.1, “Protocol Seen by the
JSP Page Author™).

JSP.1.8 Objects

A JSP page can access, create, and modify server-side objects. Objects can be
made visible to actions, EL expressions and to scripting elements. An object has a
scope describing what entities can access the object.

Actions can access objects using a name in the PageContext object.

An object exposed through a scripting variable has a scope within the page.
Scripting elements can access some objects directly via a scripting variable. Some

JavaServer Pages 2.3 Specification

1-39

1-40

CORE SYNTAX AND SEMANTICS

implicit objects are visible via scripting variables and EL expressions in any JSP
page.

JSP.1.8.1 Objects and Variables

An object may be made accessible to code in the scripting elements through a
scripting language variable. An element can define scripting variables that will con-
tain, at process request-time, a reference to the object defined by the element,
although other references may exist depending on the scope of the object.

An element type indicates the name and type of such variables although
details on the name of the variable may depend on the Scripting Language. The
scripting language may also affect how different features of the object are
exposed. For example, in the JavaBeans specification, properties are exposed via
getter and setter methods, while these properties are available directly as variables
in the JavaScript" programming language.

The exact rules for the visibility of the variables are scripting language
specific. Chapter JSP.1.1 defines the rules for when the language attribute of the
page directive is java.

JSP.1.8.2 Objects and Scopes

A JSP page can create and/or access some Java objects when processing a
request. The JSP specification indicates that some objects are created implicitly,
perhaps as a result of a directive (see Section JSP.1.8.3, “Implicit Objects”). Other
objects are created explicitly through actions, or created directly using scripting
code. Created objects have a scope attribute defining where there is a reference to
the object and when that reference is removed.

The created objects may also be visible directly to scripting elements through
scripting-level variables (see Section JSP.1.8.3, “Implicit Objects”).

Each action and declaration defines, as part of its semantics, what objects it
creates, with what scope attribute, and whether they are available to the scripting
elements.

Objects are created within a JSP page instance that is responding to a request
object. There are several scopes:

* page - Objects with page scope are accessible only within the page where they

are created. All references to such an object shall be released after the response
is sent back to the client from the JSP page or the request is forwarded some-

JavaServer Pages 2.3 Specification

Objects 1-41

where else. References to objects with page scope are stored in the pageCon-
text object.

* request - Objects with request scope are accessible from pages processing the
same request where they were created. References to the object shall be re-
leased after the request is processed. In particular, if the request is forwarded
to a resource in the same runtime, the object is still reachable. References to
objects with request scope are stored in the request object.

* session - Objects with session scope are accessible from pages processing re-
quests that are in the same session as the one in which they were created. It is
not legal to define an object with session scope from within a page that is not
session-aware (see Section JSP.1.10.1, “The page Directive”). All references
to the object shall be released after the associated session ends. References to
objects with session scope are stored in the session object associated with the
page activation.

* application - Objects with application scope are accessible from pages process-
ing requests that are in the same application as they one in which they were cre-
ated. Objects with application scope can be defined (and reached) from pages
that are not session-aware. References to objects with application scope are
stored in the application object associated with a page activation. The applica-
tion object is the servlet context obtained from the servlet configuration object.
All references to the object shall be released when the runtime environment re-
claims the ServletContext.

A name should refer to a unique object at all points in the execution; that is,
all the different scopes really should behave as a single name space. A JSP
container implementation may or may not enforce this rule explicitly for
performance reasons.

JSP.1.8.3 Implicit Objects

JSP page authors have access to certain implicit objects that are always avail-
able for use within scriptlets and scriptlet expressions through scripting variables
that are declared implicitly at the beginning of the page. All scripting languages are
required to provide access to these objects. See Section JSP.2.4, “Implicit Objects”
for the implicit objects available within EL expressions. Implicit objects are avail-
able to tag handlers through the pageContext object, see below.

JavaServer Pages 2.3 Specification

1-42

CORE SYNTAX AND SEMANTICS

Each implicit object has a class or interface type defined in a core Java
technology or Java Servlet API package, as shown in Table JSP.1-6.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable
Name Type Semantics & Scope
request protocol dependent subtype of: The request triggering
javax.servlet.ServletRequest the service invocation.
e.g: request scope.
javax.servlet.http.HttpServletRequest
response protocol dependent subtype of: The response to the
javax.servlet.ServletResponse, e.g: request.
javax.servlet.http.HttpServietResponse page scope.
pageContext javax.servlet.jsp.PageContext The page context for this
JSP page.
page scope.
session javax.servlet.http.HttpSession The session object
created for the requesting
client (if any).
This variable is only
valid for HTTP
protocols.
session scope
application javax.servlet.ServletContext The servlet context
obtained from the servlet
configuration object
(as in the call getServlet-
Config().
getContext())
application scope
out javax.servlet.jsp.JspWriter An object that writes into
the output stream.
page scope
config javax.servlet.ServletConfig The ServletConfig for

this JSP page
page scope

JavaServer Pages 2.3 Specification

Objects 1-43

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable

Name Type Semantics & Scope

page java.lang.Object The instance of this
page’s implementation
class processing the
current request”
page scope

a. When the scripting language is java then page is a synonym for this in the

body of the page.

In addition, the exception implicit object can be accessed in an error page, as
described in Table JSP.1-7.

Table JSP.1-7 Implicit Objects Available in Error Pages

Variable

Name Type Semantics & Scope

exception java.lang.Throwable The uncaught Throwable
that resulted in the error
page being invoked.
page scope.

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

See Section JSP.7.5.1, “How to Define New Implicit Objects” for some non-
normative conventions for the introduction of new implicit objects.

JSP.1.84 The pageContext Object

A PageContext is an object that provides a context to store references to objects
used by the page, encapsulates implementation-dependent features, and provides
convenience methods. A JSP page implementation class can use a PageContext to
run unmodified in any compliant JSP container while taking advantage of imple-
mentation-specific improvements like high performance JspWriters.

See Chapter JSP.12, “Core API” for more details.

JavaServer Pages 2.3 Specification

1-44

CORE SYNTAX AND SEMANTICS

JSP.1.9 Template Text Semantics

The semantics of template (or uninterpreted) Text is very simple: the template
text is passed through to the current out JspWriter implicit object, after applying the
substitutions of Section JSP.1.6, “Quoting and Escape Conventions”.

JSP.1.10 Directives

Directives are messages to the JSP container. Directives have this syntax:
<% @ directive { attr="value” }* %>

There may be optional white space after the <% @ and before %>.

This syntax is easy to type and concise but it is not XML-compatible.
Chapter JSP.6, “JSP Documents” describes equivalent alternative mechanisms
that are consistent with XML syntax.

Directives do not produce any output into the current out stream.

There are three directives: the page and the taglib directives are described
next, while the include directive is described in “The include Directive” on
page 54.

JSP.1.10.1 The page Directive

The page directive defines a number of page dependent properties and commu-
nicates these to the JSP container.

This <jsp:directive.page> element (Section JSP.6.3.4, “The jsp:directive.page
Element”) describes the same information following the XML syntax.

A translation unit (JSP source file and any files included via the include
directive) can contain more than one instance of the page directive, all the
attributes will apply to the complete translation unit (i.e. page directives are
position independent). An exception to this position independence is the use of the
pageEncoding and contentType attributes in the determination of the page
character encoding; for this purpose, they should appear at the beginning of the
page (see Section JSP.4.1). There shall be only one occurrence of any attribute/
value pair defined by this directive in a given translation unit, unless the values for
the duplicate attributes are identical for all occurrences. The import and pageEn-
coding attributes are exempt from this rule and can appear multiple times.
Multiple uses of the import attribute are cumulative (with ordered set union
semantics). The pageEncoding attribute can occur at most once per file (or a

JavaServer Pages 2.3 Specification

Directives 1-45

translation error will result), and applies only to the file in which it appears. Other
such multiple attribute/value (re)definitions result in a fatal translation error if the
values do not match.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP
page:

<% @ page info="my latest JSP Example” %>
The following directive requests no buffering, and provides an error page.
<%@ page buffer="none” errorPage="/0ops.jsp” %>

The following directive indicates that the scripting language is based on Java,
that the types declared in the package com.myco are directly available to the
scripting code, and that a buffering of 16KB should be used.

<% @ page language="java” import="com.myco.*” buffer="16kb” %>
Syntax

<% @ page page_directive_attr_list %>

page_directive_attr_list ::= { language="scriptingLanguage”}
{ extends="className”
{ import="importList’
{ session="truelfalse”
{ buffer="nonelsizekb”
{ autoFlush="truelfalse”
{ isThreadSafe="truelfalse”
{ info="info_text’
{ errorPage="error_urf’
{ isErrorPage="truelfalse”
{ contentType="ctinfo”
{ pageEncoding="peinfo”
{ isELIgnored="truelfalse”

e e e e e e e e e e

JavaServer Pages 2.3 Specification

1-46

CORE SYNTAX AND SEMANTICS

{ deferredSyntaxAllowedAsLiteral="truelfalse”}
{ trimDirectiveWhitespaces="truelfalse”}

The details of the attributes are as follows:

Table JSP.1-8 Page Directive Attributes

language

Defines the scripting language to be used in the scriptlets,
expression scriptlets, and declarations within the body of the
translation unit (the JSP page and any files included using
the include directive below).

In JSP 2.2, the only defined and required scripting language
value for this attribute is java (all lowercase, case-sensitive).
This specification only describes the semantics of scripts for
when the value of the language attribute is java.

When java is the value of the scripting language, the Java
Programming Language source code fragments used within
the translation unit are required to conform to the Java
Programming Language Specification in the way indicated
in Chapter JSP.9, “Scripting”.

All scripting languages must provide some implicit objects
that a JSP page author can use in declarations, scriptlets, and
expressions. The specific objects that can be used are defined
in Section JSP.1.8.3, “Implicit Objects”.”

All scripting languages must support the Java Runtime
Environment (JRE). All scripting languages must expose the
Java technology object model to the script environment,
especially implicit variables, JavaBeans component
properties, and public methods.

Future versions of the JSP specification may define
additional values for the language attribute and all such
values are reserved.

It is a fatal translation error for a directive with a non-java
language attribute to appear after the first scripting element
has been encountered.

Default is java.

JavaServer Pages 2.3 Specification

Directives 1-47

Table JSP.1-8 Page Directive Attributes

extends The value is a fully qualified Java programming language
class name, that names the superclass of the class to which
this JSP page is transformed (see Chapter JSP.11, “JSP
Container”).
This attribute should not be used without careful
consideration as it restricts the ability of the JSP container to
provide specialized superclasses that may improve on the
quality of rendered service. See Section JSP.7.5.1, “How to
Define New Implicit Objects” for an alternate way to
introduce objects into a JSP page that does not have this
drawback.

import An import attribute describes the types that are available to
the scripting environment. The value is as in an import
declaration in the Java programming language, a (comma
separated) list of either a fully qualified Java programming
language type name denoting that type, or of a package name
followed by the .* string, denoting all the public types
declared in that package. The import list shall be imported
by the translated JSP page implementation and is thus
available to the scripting environment.
Packages java.lang.*, javax.servlet.*, javax.servlet.jsp.*, and
javax.servlet.http.* are imported implicitely by the JSP
container. No other packages may be part of this implicitely
imported list. Page authors may use the include-prelude
feature (see Section JSP.3.3.5, “Defining Implicit Includes”)
in order to have additional packages imported transparently
into their pages.
This attribute is currently only defined when the value of the
language directive is java.

session Indicates that the page requires participation in an (HTTP)
session.
If true then the implicit script language variable named ses-
sion of type javax.servlet.http.HttpSession references the
current/new session for the page.
If false then the page does not participate in a session; the
session implicit variable is unavailable, and any reference to
it within the body of the JSP page is illegal and shall result in
a fatal translation error.
Default is true.

JavaServer Pages 2.3 Specification

1-48

CORE SYNTAX AND SEMANTICS

Table JSP.1-8 Page Directive Attributes

buffer

autoFlush

Specifies the buffering model for the initial out JspWriter to
handle content output from the page.

If none, then there is no buffering and all output is written
directly through to the ServletResponse PrintWriter.

The size can only be specified in kilobytes. The suffix kb is
mandatory or a translation error must occur.

If a buffer size is specified then output is buffered with a
buffer size not less than that specified.

Depending upon the value of the autoFlush attribute, the
contents of this buffer is either automatically flushed, or an
exception is raised, when overflow would occur.

The default is buffered with an implementation buffer size of
not less than 8kb.

The corresponding JSP configuration element is buffer
(seeSection JSP.3.3.10, “Setting Default Buffer Size”)

Specifies whether the buffered output should be flushed
automatically (true value) when the buffer is filled, or
whether an exception should be raised (false value) to
indicate buffer overflow. It is illegal, resulting in a translation
error, to set autoFlush to false when buffer=none. The default
value is true.

JavaServer Pages 2.3 Specification

Directives 1-49

Table JSP.1-8 Page Directive Attributes

isThreadSafe Note: The Servlet 2.4 specification deprecates
SingleThreadModel, which is the most common
mechanism for JSP containers to implement isThreadSafe.
Page authors are advised against using isThreadSafe, as
the generated Servlet may contain deprecated code.

Indicates the level of thread safety implemented in the page.
If false then the JSP container shall dispatch multiple
outstanding client requests, one at a time, in the order they
were received, to the page implementation for processing.
If true then the JSP container may choose to dispatch
multiple outstanding client requests to the page
simultaneously.

Page authors using true must ensure that they properly
synchronize access to the shared state of the page.

Default is true.

Note that even if the isThreadSafe attribute is false the JSP
page author must ensure that accesses to any shared objects
are properly synchronized., The objects may be shared in
either the ServletContext or the HttpSession .

info Defines an arbitrary string that is incorporated into the
translated page, that can subsequently be obtained from the
page’s implementation of Servlet.getServletinfo method.

isErrorPage Indicates if the current JSP page is intended to be the URL
target of another JSP page’s errorPage.
If true, then the implicit script language variable exception is
defined and its value is a reference to the offending
Throwable from the source JSP page in error.
If false then the exception implicit variable is unavailable,
and any reference to it within the body of the JSP page is
illegal and shall result in a fatal translation error.
Default is false.

JavaServer Pages 2.3 Specification

1-50

CORE SYNTAX AND SEMANTICS

Table JSP.1-8 Page Directive Attributes

errorPage

contentType

Defines a URL to a resource to which any Java programming
language Throwable object(s) thrown but not caught by the
page implementation are forwarded for error processing.
The provided URL spec is as in Section JSP.1.2.1.

If the URL names another JSP page then, when invoked that
JSP page’s exception implicit script variable shall contain a
reference to the originating uncaught Throwable.

The default URL is implementation dependent.

Note the Throwable object is transferred by the throwing
page implementation to the error page implementation by
saving the object reference on the common ServletRequest
object using the setAttribute method, with a name of
javax.servlet.jsp.jspException (for backwards-compatibility)
and also javax.servlet.error.exception (for compatibility with
the servlet specification). See Section JSP.1.4.3 for more
details).

Note: if autoFlush=true then if the contents of the initial Jsp-
Writer has been flushed to the ServletResponse output stream
then any subsequent attempt to dispatch an uncaught
exception from the offending page to an errorPage may fail.
If the page defines an error page via the page directive, any
error pages defined in web.xml will not be used.

Defines the MIME type and the character encoding for the
response of the JSP page, and is also used in determining the
character encoding of the JSP page.

Values are either of the form “TYPE” or “TYPE;char-
set=CHARSET’with an optional white space after the *;”.
“TYPE” is a MIME type, see the IANA registry at http://
www.iana.org/assignments/media-types/index.html for useful
values. “CHARSET”, if present, must be the IANA name for
a character encoding.

The default value for “TYPE” is “text/html” for JSP pages in
standard syntax, or “text/xml” for JSP documents in XML
syntax. If “CHARSET” is not specified, the response
character encoding is determined as described in

Section JSP.4.2, “Response Character Encoding”.

The corresponding JSP configuration element is default-
content-type (see Section JSP.3.3.9, “Declaring Default
Content Type”). See Chapter JSP.4, “Internationalization
Issues” for complete details on character encodings.

JavaServer Pages 2.3 Specification

Directives

Table JSP.1-8 Page Directive Attributes

pageEncoding

isELIgnored

deferredSyntaxAl-
lowedAsLiteral

Describes the character encoding for the JSP page. The value
is of the form “CHARSET”, which must be the IANA name
for a character encoding. For JSP pages in standard syntax,
the character encoding for the JSP page is the charset given
by the pageEncoding attriute if it is present, otherwise the
charset given by the contentType attribute if it is present,
otherwise “1SO-8859-1".

For JSP documents in XML syntax, the character encoding
for the JSP page is determined as described in section 4.3.3
and appendix F.1 of the XML specification. The pageEncod-
ing attribute is not needed for such documents. It is a
translation-time error if a document names different
encodings in its XML prolog / text declaration and in the
pageEncoding attribute. The corresponding JSP
configuration element is page-encoding (see

Section JSP.3.3.4, “Declaring Page Encodings”).

See Chapter JSP.4, “Internationalization Issues” for
complete details on character encodings.

Defines whether EL expressions are ignored or recognized
for this page and translation unit. If true, EL expressions (of
the form ${...} and #{...}) are ignored by the container. If false,
EL expressions (of the form ${...} and #{...}) are recognized
when they appear in template text or action attributes. The
corresponding JSP configuration element is el-ignored (see
Section JSP.3.3.2, “Deactivating EL. Evaluation”). The
default value varies depending on the web.xml version - see
Section JSP.2.5, “Deactivating EL Evaluation”.

Indicates if the character sequence #{ is allowed or not when
used as a String literal in this page and translation unit. If
false (the default value), a translation error occurs when the
character sequence is used as a String literal. The
corresponding JSP configuration element is deferred-syntax-
allowed-as-literal (see Section JSP.3.3.7, “Deferred Syntax
(character sequence #{)”). See “Backwards Compatibility
with JSP 2.0 for more information.

JavaServer Pages 2.3 Specification

1-51

1-52

CORE SYNTAX AND SEMANTICS

Table JSP.1-8 Page Directive Attributes

trimDirective- Indicates how whitespaces in template text should be

Whitespaces handled. If true, template text that contains only whitespaces
is removed from the output. The default is not to trim
whitespaces. This attribute is useful to remove the
extraneous whitespaces from the end of a directive that is not
followed by template text. The corresponding JSP
configuration element is trim-directive-whitespaces (see
Section JSP.3.3.8, “Removing whitespaces from template
text”). The attribute is ignored by JSP documents (XML
syntax).

JSP.1.10.2 The taglib Directive

The set of significant tags a JSP container interprets can be extended through a
tag library.

The taglib directive in a JSP page declares that the page uses a tag library,
uniquely identifies the tag library using a URI and associates a tag prefix that will
distinguish usage of the actions in the library.

If a JSP container implementation cannot locate a tag library description, a
fatal translation error shall result.

It is a fatal translation error for the taglib directive to appear after actions or
functions using the prefix.

A tag library may include a validation method that will be consulted to
determine if a JSP page is correctly using the tag library functionality.

See Chapter JSP.7, “Tag Extensions” for more specification details. And see
Section JSP.7.2.3, “Tag Library directive” for an implementation note.

Section JSP.6.3.1, “Namespaces, Standard Actions, and Tag Libraries”
describes how the functionality of this directive can be exposed using XML
syntax.

Examples

In the following example, a tag library is introduced and made available to
this page using the super prefix; no other tag libraries should be introduced in
this page using this prefix. In this particular case, we assume the tag library
includes a doMagic element type, which is used within the page.

<% @ taglib uri="http://www.mycorp/supertags” prefix="super” %>

JavaServer Pages 2.3 Specification

Directives

<super:doMagic>

</super:doMagic>

Syntax

<% @ taglib (uri="tagLibraryURF’ | tagdir="tagDir’) prefix="tagPrefix’ %>

where the attributes are:

Table JSP.1-9

uri

tagdir

prefix

Either an absolute URI or a relative URI specification that
uniquely identifies the tag library descriptor associated with
this prefix.

The URI is used to locate a description of the tag library as
indicated in Chapter JSP.7, “Tag Extensions”.

Indicates this prefix is to be used to identify tag extensions
installed in the /WEB-INF/tags/ directory or a subdirectory.
An implicit tag library descriptor is used (see

Section JSP.8.4, “Packaging Tag Files” for details). A
translation error must occur if the value does not start with /
WEB-INF/tags. A translation error must occur if the value
does not point to a directory that exists. A translation error
must occur if used in conjunction with the uri attribute.

Defines the prefix string in <prefix>:<tagname> that is used to
distinguish a custom action, e.g <myPrefix:myTag>.

Prefixes starting with jsp:, jspx:, java:, javax:, servlet:, sun:,
and sunw: are reserved.

A prefix must follow the naming convention specified in the
XML namespaces specification.

Empty prefixes are illegal in this version of the specification,
and must result in a translation error.

A fatal translation-time error will result if the JSP page translator encounters a

tag with name prefix: Name using a prefix that is introduced using the taglib
directive, and Name is not recognized by the corresponding tag library.

JavaServer Pages 2.3 Specification

1-53

1-54

CORE SYNTAX AND SEMANTICS

JSP.1.10.3 The include Directive

The include directive is used to substitute text and/or code at JSP page transla-
tion-time. The <% @ include file="relativeURLspec” %> directive inserts the text of
the specified resource into the page or tag file. The included file is subject to the
access control available to the JSP container. The file attribute is as in
Section JSP.1.2.1.

With respect to the standard and XML syntaxes, a file included via the include
directive can use either the same syntax as the including page, or a different
syntax. the semantics for mixed syntax includes are described in
Section JSP.1.10.5.

A JSP container can include a mechanism for being notified if an included file
changes, so the container can recompile the JSP page. However, the JSP 2.2
specification does not have a way of directing the JSP container that included files
have changed.

The <jsp:directive.include> element (Section JSP.6.3.5, “The
jsp:directive.include Element”) describes the same information following the
XML syntax.

Examples

The following example requests the inclusion, at translation time, of a copy-
right file. The file may have elements which will be processed too.

<% @ include file="copyright.html” %>

Syntax

<% @ include file="relativeURLspec" %>

JSP.1.10.4 Implicit Includes

Many JSP pages start with a list of taglib directives that activate the use of tag
libraries within the page. In some cases, these are the only tag libraries that are sup-
posed to be used by the JSP page authors. These, and other common conventions are
greately facilitated by two JSP configuration elements: include-prelude and include-
coda. A full description of the mechanism is in Section JSP.3.3.5, “Defining Implicit
Includes”.

With respect to the standard and XML syntaxes, just as with the include
directive, implicit includes can use either the same syntax as the including page,

JavaServer Pages 2.3 Specification

Directives

or a different syntax. The semantics for mixed syntax includes are described in
Section JSP.1.10.5.

JSP.1.10.5 Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the
JSP 2.2 specification has two include mechanisms suited to different tasks. A sum-
mary of their semantics is shown in Table JSP.1-10.

Table JSP.1-10 Summary of Include Mechanisms in JSP 2.2

Syntax Spec Object Description Section
Include Directive - Translation-time

<%@ include file=... %> file- static Content is parsed JSP.1.10.3
relative by JSP container.

Include Action - Request-time

<jsp:include page= /> page- static Content is not JSP5.4
relative and dynamic parsed; it is
included in place.

The Spec column describes what type of specification is valid to appear in the
given element. The JSP specification requires a relative URL spec. The reference
is resolved by the web/application server and its URL map is involved. Include
directives are interpreted relative to the current JSP file; jsp:include actions are
interpreted relative to the current JSP page.

An include directive regards a resource like a JSP page as a static object; i.e.
the text in the JSP page is included. An include action regards a resource like a
JSP page as a dynamic object; i.e. the request is sent to that object and the result of
processing it is included.

Implicit include directives can also be requested for a collection of pages
through the use of the <include-prelude> and <include-coda> elements of the JSP
configuration section of web.xml.

For translation-time includes, included content can use either the same syntax
as the including page, or a different syntax. For example, a JSP file written in the
standard JSP syntax can include a JSP file written using the XML syntax. The
following semantics for translation-time includes apply:

JavaServer Pages 2.3 Specification

1-55

1-56

CORE SYNTAX AND SEMANTICS

* The JSP container must detect the syntax for each JSP file individually and
parse each JSP file according to the syntax in which it is written.

» A JSP file written using the XML syntax must be well-formed according to
the "XML" and "Namespaces in XML" specifications, otherwise a translation
€ITor must occur.

* When including a JSP document (written in the XML syntax), in the resulting
XML View of the translation unit the root element of the included segment
must have the default namespace reset to "". This is so that any namespaces
associated with the empty prefix in the including document are not carried
over to the included document.

* When a taglib directive is encountered in a standard syntax page, the
namespace is applied globally, and is added to the <jsp:root> element of the
resulting XML View of the translation unit.

* If a taglib directive is encountered in a standard syntax page that attempts to
redefine a prefix that is already defined in the current scope (by a JSP segment
in either syntax), a translation error must occur unless that prefix is being re-
defined to the same namespace URI.

See Section JSP.10.3, “Examples” for examples of how these semantics are
applied to actual JSP pages and documents.

JSP.1.10.6 Additional Directives for Tag Files

Additional directives are available when editing a tag file. See Section JSP.8.5,
“Tag File Directives” for details.

JSP.1.11 EL Elements

EL expressions can appear in template data and in attribute values. EL expres-
sions are defined in more detail in Chapter JSP.2, “Expression Language”.

EL expressions can be disabled through the use of JSP configuration elements
and page directives; see Section JSP.1.10.1 and Section JSP.3.3.2, “Deactivating
EL Evaluation”.

EL expressions, when not disabled, can be used anywhere within template
data.

EL expressions can be used in any attribute of a standard action that this
specification indicates can accept a run-time expression value, and in any attribute

JavaServer Pages 2.3 Specification

Scripting Elements 1-57

of a custom action that has been indicated to accept run-time expressions (i.e.
their associated <rtexprvalue> in the TLD is true; see Appendix JSP.C).

JSP.1.12 Scripting Elements

Scripting elements are commonly used to manipulate objects and to perform
computation that affects the content generated.

JSP 2.0 adds EL expressions as an alternative to scripting elements. These are
described in more detail in Chapter JSP.2, “Expression Language”. Note that
scripting elements can be disabled through the use of the scripting-invalid element in
the web.xml deployment descriptor (see Section JSP.3.3.3, “Disabling Scripting
Elements™).

There are three other classes of scripting elements: declarations, scriptlets
and expressions. The scripting language used in the current page is given by the
value of the language directive (see Section JSP.1.10.1, “The page Directive”). In
JSP 2.2, the only value defined is java.

Declarations are used to declare scripting language constructs that are
available to all other scripting elements. Scriptlets are used to describe actions to
be performed in response to some request. Scriptlets that are program fragments
can also be used to do things like iterations and conditional execution of other
elements in the JSP page. Expressions are complete expressions in the scripting
language that get evaluated at response time; commonly, the result is converted
into a string and inserted into the output stream.

All JSP containers must support scripting elements based on the Java
programming language. Additionally, JSP containers may also support other
scripting languages. All such scripting languages must support:

* Manipulation of Java objects.
* Invocation of methods on Java objects.

* Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements
based on the Java programming language is given in Chapter JSP.9, “Scripting”.

The semantics for other scripting languages are not precisely defined in this
version of the specification, which means that portability across implementations
cannot be guaranteed. Precise definitions may be given for other languages in the
future.

Each scripting element has a <%-based syntax as follows:

JavaServer Pages 2.3 Specification

1-58 CORE SYNTAX AND SEMANTICS

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

White space is optional after <%!, <%, and <%=, and before %>.
The equivalent XML elements for these scripting elements are described in
Section JSP.6.3.7, “Scripting Elements”.

JSP.1.12.1 Declarations

Declarations are used to declare variables and methods in the scripting language
used in a JSP page. A declaration must be a complete declarative statement, or
sequence thereof, according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.

Declarations are initialized when the JSP page is initialized and are made
available to other declarations, scriptlets, and expressions.

The <jsp:declaration> element (Section JSP.6.3.7, “Scripting Elements”)
describes the same information following the XML syntax.

Examples

For example, the first declaration below declares an integer, global to the
page. The second declaration does the same and initializes it to zero. This type
of initialization should be done with care in the presence of multiple requests
on the page. The third declaration declares a method global to the page.

<%! int i; %>

<%!inti=0; %>

<%! public String f(int i) { if (i<3) return(“..”); ... } %>
Syntax

<%! declaration(s) %>

JSP.1.12.2 Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting lan-
guage specified in the language attribute of the page directive. Whether the code

JavaServer Pages 2.3 Specification

Scripting Elements 1-59

fragment is legal depends on the details of the scripting language (see
Chapter JSP.9, “Scripting”).

Scriptlets are executed at request-processing time. Whether or not they
produce any output into the out stream depends on the code in the scriptlet.
Scriptlets can have side-effects, modifying the objects visible to them.

When all scriptlet fragments in a given translation unit are combined in the
order they appear in the JSP page, they must yield a valid statement, or sequence
of st