JavaServer™ Faces DRACLE

JavaServer™ Faces Specification

Version 2.3
// Ed Burns and Manfred Riem editors

See <https://jsf-spec.java.net/>

to comment on and discuss this specification.

Oracle America, Inc

500 Oracle Parkway
Redwood Shores, CA 94065
650 506 7000

March 2017

Submit comments to users@javaserverfaces-spec-public.java.net

This document is covered by the “click-through” license that must have been accepted in order to download this document.
If you are reading this document without having accepted this license, please do so by visiting <https://jcp.org/en/jsr/detail?id=372> and following

the most recent “download” link until you are prompted with the “click-through” license.

| March 2017

Contents

Preface 1
Changes between 2.2 and 2.3 1
Big Ticket Features 1
Other Features, by Functional Area 2
Components/Renderers 2
Lifecycle 3
Platform Integration 4
Facelets/VDL 4
Spec Clarifications 5
Resources 6
Expression Language. 6
Configuration and Bootstrapping 6
Miscellaneous 6
Backward Compatibility with Previous Versions 6
Breakages in Backward Compatibility 7
Related Technologies 7
Other Java™ Platform Specifications 7
Related Documents and Specifications 7
Terminology 8
Providing Feedback 8§

Acknowledgements 8

1. Overview 1-11
1.1 Solving Practical Problems of the Web 1-11
1.2 Specification Audience 1-12
1.2.1 Page Authors 1-12
1.2.2 Component Writers 1-12

Contents i

1.3

1.2.3
1.2.4
1.2.5

Application Developers

Tool Providers

JSF Implementors

Introduction to JSF APIs

1.3.1
1.3.2
1.33
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.3.11
1.3.12
1.3.13

package javax

package javax.
package javax.
package javax.
package javax.
package javax.
package javax.
package javax.
package javax.
package javax.
package javax.
package javax.

package javax.

2. Request Processing Lifecycle

2.1

2.2

23
2.4

Request Processing Lifecycle Scenarios

2.1.1
2.1.2
2.13

Standard Request Processing Lifecycle Phases

2.2.1
2.2.2

223

224

2.2.5
2.2.6

Non-Faces Request Generates Faces Response
Faces Request Generates Faces Response

Faces Request Generates Non-Faces Response

1-13
1-13

1-14
1-14

.faces 1-14

faces.application 1-14

faces.component 1-14

faces.component.html 1-15

faces.context 1-15

faces.convert 1-15

faces.el 1-15

faces.flowand javax.faces.flow.builder

faces.lifecycle 1-15

faces.event 1-15

faces.render 1-16

faces.validator 1-16

faces.webapp 1-16

2-1

2-2

2-2
2-2

2-3
2-4

Restore View 24

Apply Request Values

2.2.2.1

Process Validations

2-5

Apply Request Values Partial Processing 2-6

2-6

2.23.1 Partial Validations Partial Processing 2-7
Update Model Values 2-7
2.24.1 Update Model Values Partial Processing 2-8

Invoke Application 2-8

Render Response

2.2.6.1

2-8

Render Response Partial Processing 2-9

Common Event Processing 2-10

Common Application Activities

iii JavaServer Faces Specification ¢

2-11

March 2017

1-15

2.5

2.6

2.4.1

242

Acquire Faces Object References 2-11

2.4.1.1 Acquire and Configure Lifecycle Reference 2-11
2.4.1.2 Acquire and Configure FacesContext Reference 2-12
Create And Configure A New View 2-12

24.2.1 Create A New View 2-12

2422 Configure the Desired RenderKit 2-13

2423 Configure The View’s Components 2-13

2424 Store the new View in the FacesContext 2-13

Concepts that impact several lifecycle phases 2-13

2.5.1

252

253

2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10

Value Handling 2-14

2.5.1.1 Apply Request Values Phase 2-14

2.5.1.2 Process Validators Phase 2-14

2513 Executing Validation 2-14

2.5.14 Update Model Values Phase 2-14

Localization and Internationalization (L10N/I18N) 2-14

2.5.2.1 Determining the active Locale 2-15

2522 Determining the Character Encoding 2-15

2.5.23 Localized Text 2-16

2524 Localized Application Messages 2-16

State Management 2-19

2.53.1 State Management Considerations for the Custom Component Author 2-19
2.53.2 State Management Considerations for the JSF Implementor 2-20
Resource Handling 2-21

View Parameters 2-21

Bookmarkability 2-22

JSR 303 Bean Validation 2-22

Ajax 2-23

Component Behaviors 2-23

System Events 2-24

Resource Handling 2-25

2.6.1

Packaging Resources 2-25

2.6.1.1 Packaging Resources into the Web Application Root 2-25
2.6.1.2 Packaging Resources into the Classpath 2-25

2.6.13 Resource Identifiers 2-25

2.6.14 Libraries of Localized and Versioned Resources 2-27

Contents

2.6.2 Rendering Resources 2-30
2.6.2.1 Relocatable Resources 2-30
2.6.2.2 Resource Rendering Using Annotations 2-31

2.7 Resource Library Contracts 2-31

3. User Interface Component Model 3-1
3.1 UlComponent and UIComponentBase 3-1
3.1.1 Component Identifiers 3-2
3.1.2 Component Type 3-2
3.1.3 Component Family 3-2
3.1.4 ValueExpression properties 3-2
3.1.5 Component Bindings 3-3
3.1.6 Client Identifiers 3—4
3.1.7 Component Tree Manipulation 3—4
3.1.8 Component Tree Navigation 3-5
3.1.9 Facet Management 3-6
3.1.10 Managing Component Behavior 3-7
3.1.11 Generic Attributes 3-7
3.1.11.1 Special Attributes 3-8
3.1.12 Render-Independent Properties 3-9
3.1.13 Component Specialization Methods 3-10
3.1.14 Lifecycle Management Methods 3-11
3.1.15 Utility Methods 3-12
32 Component Behavioral Interfaces 3-12
3.2.1 ActionSource 3-12
3.2.1.1 Properties 3-13
3212 Methods 3-13
3.2.13 Events 3-13
3.2.2 ActionSource2 3-14
3.2.2.1 Properties 3-14
3222 Methods 3-14
3.2.23 Events 3-14
3.2.3 NamingContainer 3-15
3.2.4 StateHolder 3-15
3.24.1 Properties 3-15
3.2.42 Methods 3-15

| v JavaServer Faces Specification + March 2017

3.3

3.4

3.2.5

3.2.6

3.2.7

3.2.8

3.2.9

3.243 Events 3-16
PartialStateHolder 3-16
3.2.5.1 Properties 3-16
3.252 Methods 3-16
3.2.53 Events 3-17
ValueHolder 3-17

3.2.6.1 Properties 3-17
3.2.6.2 Methods 3-17
3.2.63 Events 3-17
EditableValueHolder 3-18
3.2.7.1 Properties 3-18
3.2.7.2 Methods 3-18
3.2.73 Events 3-19
SystemEventListenerHolder 3-19
3.2.8.1 Properties 3-19
3.2.82 Methods 3-19
3.2.83 Events 3-20
ClientBehaviorHolder 3-20

Conversion Model 3-21

3.3.1
332
333

Overview 3-21
Converter 3-21

Standard Converter Implementations 3-22

Event and Listener Model 3-24

3.4.1
342

343

Overview 3-24

Application Events 3-26

3.4.2.1 Event Classes 3-26
3422 Listener Classes 3-27
3423 Phase Identifiers 3-27
3424 Listener Registration 3-27
3425 Event Queueing 3-28
3426 Event Broadcasting 3-28
System Events 3-28

3.4.3.1 Event Classes 3-28
3432 Listener Classes 3-29

3433 Programmatic Listener Registration 3-30

Contents

vi

3.5

3.6

3.7

3434 Declarative Listener Registration 3-30

3435 Listener Registration By Annotation 3-30

3.43.6 Listener Registration By Application Configuration Resources 3-31

3.4.3.7 Event Broadcasting 3-31

Validation Model 3-32

3.5.1
3.5.2
3.53
3.54
3.5.5
3.5.6

Overview 3-32
Validator Classes 3-32
Validation Registration 3-32

Validation Processing 3-33

Standard Validator Implementations 3-34

Bean Validation Integration 3-34

3.5.6.1 Bean Validator Activation 3-35
3.5.6.2 Obtaining a ValidatorFactory 3-35
3.5.6.3 Class-Level Validation 3-35
3.5.64

Localization of Bean Validation Messages

Composite User Interface Components 3-37

3.6.1

3.6.2

Non-normative Background 3-37

3.6.1.1 What does it mean to be a JSF User Interface component? 3-37

3.6.1.2 How does one make a custom JSF User Interface component (JSF 1.2 and earlier)?
38

3.6.1.3 How does one make a composite component? 3-38

3.6.14 A simple composite component example 3-39

3.6.1.5 Walk through of the run-time for the simple composite component example

3.6.1.6 Composite Component Terms 3-41

Normative Requirements 3-42

3.6.2.1

Composite Component Metadata 3-43

Component Behavior Model 3-44

3.7.1
3.7.2
3.73
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9

vii

Overview 3-44

Behavior Interface 3-45

BehaviorBase 3-45

The Client Behavior Contract 3-45

ClientBehaviorHolder 3-46

ClientBehaviorRenderer 3-46

ClientBehaviorContext 3-46

ClientBehaviorHint 3-47

ClientBehaviorBase 3-47

JavaServer Faces Specification *+ March 2017

3-36

3-40

3—

3.7.10

3.7.11

3.7.12
3.7.13

Behavior Event / Listener Model 348
3.7.10.1 Event Classes 3-48

3.7.10.2 Listener Classes 3-48

3.7.10.3 Listener Registration 3-48

Ajax Behavior 3-48

3.7.11.1 AjaxBehavior 3-48

3.7.11.2 Ajax Behavior Event / Listener Model
Adding Behavior To Components 3-49
Behavior Registration 3-50

3.7.13.1 XML Registration 3-50

3.7.13.2 Registration By Annotation 3-50

4. Standard User Interface Components 4-1

4.1 Standard User Interface Components 4-1

4.1.1

UlColumn 4-3

4.1.1.1 Component Type 4-3
4.1.1.2 Properties 4-3
4.1.13 Methods 4-3
4.1.1.4 Events 4-3
UlCommand 44

4.1.2.1 Component Type 4-4
4122 Properties 44
41223 Methods 4-4
4124 Events 4-4

UlData 4-5

4.1.3.1 Component Type 4-5
4.1.3.2 Properties 4-5
4133 Methods 4-6
4134 Events 4-6
UlForm 4-7

4.14.1 Component Type 4-7
4.14.2 Properties 4-7
4.1.43 Methods. 4-7
4.1.44 Events 4-8
UlGraphic 4-9

4.1.5.1 Component Type 4-9

3-49

Contents

viii

4.1.5.2 Properties 4-9
4153 Methods 4-9
4154 Events 4-9
4.1.6 Ullnput 4-10
4.1.6.1 Component Type
4.1.6.2 Properties 4-10
4.1.6.3 Methods 4-11
4.1.64 Events 4-11
4.1.7 UlMessage 4-12
4.1.7.1 Component Type
4.1.7.2 Properties 4-12
4.1.7.3 Methods. 4-12
4.1.7.4 Events 4-12
4.1.8 UlMessages 4-13
4.1.8.1 Component Type
4.1.8.2 Properties 4-13
4.1.8.3 Methods. 4-13
4.1.8.4 Events 4-13
4.19 UlOutcomeTarget 4-14
4.1.9.1 Component Type
4.19.2 Properties 4-14
4.19.3 Methods 4-14
4.1.9.4 Events 4-14
4.1.10 UlOutput 4-15
4.1.10.1 Component Type
4.1.10.2 Properties 4-15
4.1.10.3 Methods 4-15
4.1.10.4 Events 4-15
4.1.11 UlPanel 4-16
4.1.11.1 Component Type
4.1.11.2 Properties 4-16
4.1.11.3 Methods 4-16
4.1.11.4 Events 4-16
4.1.12 UlIParameter 4-17

4.1.12.1 Component Type

ix JavaServer Faces Specification « March 2017

4.1.13

4.1.14

4.1.15

4.1.16

4.1.17

4.1.18
4.1.19

4.1.12.2 Properties 4-17
4.1.12.3 Methods 4-17
4.1.12.4 Events 4-17
UlSelectBoolean 4-18
4.1.13.1 Component Type
4.1.13.2 Properties 4-18
4.1.13.3 Methods 4-18
4.1.13.4 Events 4-18
UlSelectltem 4-19
4.1.14.1 Component Type
4.1.14.2 Properties 4-19
4.1.14.3 Methods 4-19
4.1.144 Events 4-19
UlSelectltems 4-20
4.1.15.1 Component Type
4.1.15.2 Properties 4-20
4.1.15.3 Methods 4-20
4.1.154 Events 4-20
UlSelectMany 4-21
4.1.16.1 Component Type
4.1.16.2 Properties 4-21
4.1.16.3 Methods 4-21
4.1.16.4 Events 4-21
UlSelectOne 4-22
4.1.17.1 Component Type
4.1.17.2 Properties 4-22
4.1.17.3 Methods 4-22
4.1.17.4 Events 4-22
UlViewParameter 4-23
UlViewRoot 4-24
4.1.19.1 Component Type
4.1.19.2 Properties 4-24
4.1.19.3 Methods 4-25
4.1.19.4 Events 4-25
4.1.19.5 Partial Processing

4-20

4-21

4-22

4-24

4-26

Contents

X

4.2 Standard UIComponent Model Beans 4-27
4.2.1 DataModel 4-27
4.2.1.1 Properties 4-27
42.1.2 Methods 4-27
4.2.13 Events 4-27
4.2.14 Concrete Implementations 4-27
4.2.2 Selectltem 4-29
4221 Properties 4-29
4222 Methods 4-29
42223 Events 4-29
4.2.3 SelectltemGroup 4-30
423.1 Properties 4-30
4232 Methods 4-30
4233 Events 4-30

Expression Language and Managed Bean Facility 5-1
5.1 Value Expressions 5-1
5.1.1 Overview 5-1
5.1.2 Value Expression Syntax and Semantics 5-2
5.2 MethodExpressions 52
5.2.1 MethodExpression Syntax and Semantics 5—4
5.3 The Managed Bean Facility 5-4
5.3.1 Managed Bean Configuration Example 5-7
5.4 Managed Bean Annotations 5-9
5.4.1 JSF Managed Classes and Java EE Annotations 5-9
5.4.2 Managed Bean Lifecycle Annotations 5-11
5.5 How Faces Leverages the Unified EL 5-12
5.5.1 ELContext 5-12
5.5.1.1 Lifetime, Ownership and Cardinality 5-12
5.5.1.2 Properties 5-13
5.5.13 Methods 5-13
5.5.1.4 Events 5-13
5.5.2 ELResolver 5-13
5.5.2.1 Lifetime, Ownership, and Cardinality 5-14
5522 Properties 5-14
5523 Methods 5-14

| xi JavaServer Faces Specification « March 2017

5.6

5.7

5.8

553

5.5.2.4

Events 5-14

ExpressionFactory 5-14

5.5.3.1
5532
5533
5.5.3.4

Lifetime, Ownership, and Cardinality 5-14
Properties 5-15

Methods 5-15

Events 5-15

ELResolver Instances Provided by Faces 5-15

5.6.1

5.6.2

5.6.3

Faces ELResolver for JSP Pages 5-15

5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.1.5
5.6.1.6
5.6.1.7
5.6.1.8

Faces Implicit Object ELResolver For JSP 5-16
ManagedBean ELResolver 5-18

Resource ELResolver 5-20

ResourceBundle ELResolver for JSP Pages 5-20
ELResolvers in the application configuration resources 5-22
VariableResolver Chain Wrapper 5-22

PropertyResolver Chain Wrapper 5-23

ELResolvers from Application.addELResolver() 5-24

ELResolver for Facelets and Programmatic Access 5-24

5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.6
5.6.2.7
5.6.2.8
5.6.2.9

Implicit Object ELResolver for Facelets and Programmatic Access 5-25
Composite Component Attributes ELResolver 5-29

The CompositeELResolver 5-31

ManagedBean ELResolver 5-31

Resource ELResolver 5-31

el.ResourceBundleELResolver 5-33

ResourceBundle ELResolver for Programmatic Access 5-33

Stream, StaticField, Map, List, Array, and Bean ELResolvers 5-33
ScopedAttribute ELResolver 5-33

CDI for EL Resolution 5-35

Current Expression Evaluation APIs 5-35

5.7.1
5.7.2
5.73
5.7.4

ELResolver 5-35

ValueExpression 5-35

MethodExpression 5-36

Expression Evaluation Exceptions 5-36

Deprecated Expression Evaluation APIs 5-36

5.8.1
5.8.2

VariableResolver and the Default VariableResolver 5-36

PropertyResolver and the Default PropertyResolver 5-36

Contents

xii

5.8.3 ValueBinding 5-37
5.8.4 MethodBinding 5-37
5.8.5 Expression Evaluation Exceptions 5-38
5.9 CDI Integration 5-38
5.9.1 JSF Objects Valid for @Inject Injection 5-38
5.9.2 EL Resolution 5-39

6. Per-Request State Information 6-1
6.1 FacesContext 6-1
6.1.1 Application 6-1
6.1.2 Attributes 6-1
6.1.3 ELContext 6-2
6.1.4 ExternalContext 6-2
6.1.4.1 Flash 64
6.1.5 ViewRoot 64
6.1.6 Message Queue 64
6.1.7 RenderKit 6-5
6.1.8 ResponseStream and ResponseWriter 6-5
6.1.9 Flow Control Methods 6-5
6.1.10 Partial Processing Methods 6-6
6.1.11 Partial View Context 66
6.1.12 Access To The Current FacesContext Instance 6—6
6.1.13 CurrentPhaseld 6-7
6.1.14 ExceptionHandler 6-7
6.2 ExceptionHandler 6-7
6.2.1 Default ExceptionHandler implementation 6—8
6.2.2 Backwards Compatible ExceptionHandler 6-9
6.2.3 Default Error Page 6-9
6.3 FacesMessage 6-10
6.4 ResponseStream 6-10
6.5 ResponseWriter 6-11
6.6 FacesContextFactory 6-13
6.7 ExceptionHandlerFactory 6-13

6.8 ExternalContextFactory 6-14

7. Application Integration 7-1

| xiii JavaServer Faces Specification + March 2017

7.1

7.2
7.3
7.4

7.5

7.6

Application 7-1

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12

7.1.13
7.1.14

ActionListener Property 7-1
DefaultRenderKitld Property 7-2
FlowHandler Property 7-2
NavigationHandler Property 7-3
StateManager Property 7-3

ELResolver Property 7-3
ELContextListener Property 7-3
ViewHandler Property 7-4

ProjectStage Property 74

Acquiring ExpressionFactory Instance 74
Programmatically Evaluating Expressions 7-5
Object Factories 7-5

7.1.12.1 Default Validator Ids 7-6
Internationalization Support 7-7

System Event Methods 7-7

7.1.14.1 Subscribing to system events 7-7

7.1.14.2 Unsubscribing from system events 7-8

ApplicationFactory 7-8

Application Actions 7-8

NavigationHandler 7-9

7.4.1
7.4.2

7.4.3

Overview 7-9
Default NavigationHandler Algorithm 7-10

7.4.2.1 Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes
7-13

7.4.2.2 Requirements for Entering a Flow 7-14
7.4.2.3 Requirements for Exiting a Flow 7-14
7.4.2.4 Requirements for Calling A Flow from the Current Flow 7-14

Example NavigationHandler Configuration 7-15

FlowHandler 7-19

7.5.1
7.5.2

Non-normative example 7-20

Non-normative Feature Overview 7-21

ViewHandler 7-22

7.6.1
7.6.2

Overview 7-22
Default ViewHandler Implementation 7-24

7.6.2.1 ViewHandler Methods that Derive Information From the Incoming Request 7-24

Contents xiv

7.6.2.2

ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle 7-26

7.6.2.3 ViewHandler Methods Relating to Navigation 7-26
7.6.2.4 ViewHandler Methods that relate to View Protection 7-28
7.7 ViewDeclarationLanguage 7-28
7.7.1 ViewDeclarationLanguageFactory 7-28
7.7.2 Default ViewDeclarationLanguage Implementation 7-29
7.7.2.1 ViewDeclarationLanguage.createView() 7-29
7.7.2.2 ViewDeclarationLanguage.calculateResourceLibraryContracts() 7-30
7.7.2.3 ViewDeclarationLanguage.buildView() 7-30
7.7.2.4 ViewDeclarationLanguage.getComponentMetadata() 7-30
7.7.2.5 ViewDeclarationLanguage.getViewMetadata() and getViewParameters() 7-31
7.7.2.6 ViewDeclarationLanguage.getScriptComponentResource() 7-32
7.7.2.7 ViewDeclarationLanguage.renderView() 7-32
7.7.2.8 ViewDeclarationLanguage.restoreView() 7-33
7.8 StateManager 7-33
7.8.1 Overview 7-34
7.8.1.1 Stateless Views 7-34
7.8.2 State Saving Alternatives and Implications 7-34
7.8.3 State Saving Methods. 7-35
7.8.4 State Restoring Methods 7-35
7.8.5 Convenience Methods 7-36
7.9 ResourceHandler 7-36
7.10 Deprecated APIs 7-36
7.10.1 PropertyResolver Property 7-36
7.10.2 VariableResolver Property 7-37
7.10.3 Acquiring ValueBinding Instances 7-37
7.10.4 Acquiring MethodBinding Instances 7-37
7.10.5 Object Factories 7-38
7.10.6 StateManager 7-38
7.10.7 ResponseStateManager 7-38
Rendering Model 8-1
8.1 RenderKit 8-1
8.2 Renderer 8-3
8.3 ClientBehaviorRenderer 84

8.3.1

XV

ClientBehaviorRenderer Registration 8—4

JavaServer Faces Specification *+ March 2017

8.4
8.5
8.6
8.7

ResponseStateManager 85

RenderKitFactory 8-5

Standard HTML RenderKit Implementation 8-6

The Concrete HTML Component Classes

Integration with JSP 9-1

9.1
9.2

9.3

9.4

UIComponent Custom Actions

8-6

Using UIComponent Custom Actions in JSP Pages

9.2.1
9.2.2
9.23
924
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9

Declaring the Tag Libraries

9-2

Including Components in a Page

Creating Components and Overriding Attributes

9-3

Deleting Components on Redisplay 94

Representing Component Hierarchies

Registering Converters, Event Listeners, and Validators

Using Facets 9-6

Interoperability with JSP Template Text and Other Tag Libraries

9-5

Composing Pages from Multiple Sources

9-2

9-7

9-3

UIComponent Custom Action Implementation Requirements

9.3.1

Considerations for Custom Actions written for JavaServer Faces 1.1 and 1.0 9-9

9.3.1.1
93.1.2

Past and Present Tag constraints

9-10

9-5

9-7

Faces 1.0 and 1.1 Taglib migration story 9-10

JSF Core Tag Library 9-11

9.4.1

9.4.2

943

<f:actionListener> 9-12

Syntax

9-12

Body Content 9-12

Attributes

Constraints

9-12
9-12

Description 9-12

<f:attribute> 9-13

Syntax

9-13

Body Content 9-13

Attributes

Constraints

9-13
9-13

Description 9-13

<f:convertDateTime> 9-14

Syntax

9-14

9-6

Contents

XVi

Body Content 9-14
Attributes 9-15
Constraints 9-16
Description 9-16
944 <ficonvertNumber> 9-18
Syntax 9-18
Body Content 9-18
Attributes 9-19
Constraints 9-19
Description 9-20
9.4.5 <ficonverter> 9-21
Syntax 9-21
Body Content 9-21
Attributes 9-21
Constraints 9-21
Description 9-21
9.4.6 <fifacet> 9-22
Syntax 9-22
Body Content 9-22
Attributes 9-22
Constraints 9-22
Description 9-22
9.4.7 <floadBundle> 9-23
Syntax 9-23
Body Content 9-23
Attributes 9-23
Constraints 9-23
Description 9-23
9.48 <fiparam> 9-24
Syntax 9-24
Body Content 9-24
Attributes 9-24
Constraints 9-24
Description 9-24
9.49 <fphaseListener> 9-25

| xvii JavaServer Faces Specification « March 2017

Syntax 9-25
Body Content 9-25
Attributes 9-25
Constraints 9-25
Description 9-25
9.4.10 <fselectltem> 9-26
Syntax 9-26
Body Content 9-26
Attributes 9-27
Constraints 9-27
Description 9-27
9.4.11 <fselectltems> 9-28
Syntax 9-28
Body Content 9-28
Attributes 9-28
Constraints 9-28
Description 9-28
9.4.12 <f:setPropertyActionListener> 9-29
Syntax 9-29
Body Content 9-29
Attributes 9-29
Constraints 9-29
Description 9-29
9.4.13 <fisubview> 9-31
Syntax 9-31
Body Content 9-31
Attributes 9-31
Constraints 9-31
Description 9-31
9.4.14 <f.validateDoubleRange> 9-34
Syntax 9-34
Body Content 9-34
Attributes 9-34
Constraints 9-34

Description 9-34

Contents xviii

9.4.15 <f.validateLength> 9-36
Syntax 9-36
Body Content 9-36
Attributes 9-36
Constraints 9-36
Description 9-36
9.4.16 <f.validateRegex> 9-38
Syntax 9-38
Body Content 9-38
Attributes 9-38
Constraints 9-38
Description 9-38
9.4.17 <fivalidateLongRange> 9-39
Syntax 9-39
Body Content 9-39
Attributes 9-39
Constraints 9-39
Description 9-39
9.4.18 <fivalidator> 9-41
Syntax 941
Body Content 941
Attributes 941
Constraints 941
Description 9-41
9.4.19 <fivalueChangeListener> 9-42
Syntax 9-42
Body Content 9-42
Attributes 942
Constraints 942
Description 942
9.4.20 <fiverbatim> 9-44
Syntax 9-44
Body Content 9-44
Attributes 944

Constraints 9-44

xix JavaServer Faces Specification « March 2017

10.

9.5

9.4.21

Description 9-44
<fiview> 9-45
Syntax 9-45
Body Content 9-45
Attributes 945
Constraints 945

Description 9-46

Standard HTML RenderKit Tag Library 947

Facelets and its use in Web Applications 10-1

10.1

10.2

10.3

10.4

Non-normative Background 10-1

10.1.1
10.1.2
10.1.3

10.1.4

Differences between JSP and Facelets 10-1

Differences between Pre JSF 2.0 Facelets and Facelets in JSF 2.0 10-2
Resource Library Contracts Background 10-3

10.1.3.1 Non-normative Example 10-3

10.1.3.2 Non-normative Feature Overview 10-5

HTMLS Friendly Markup 10-6

10.1.4.1 Non-normative Feature Overview 10-7

Java Programming Language Specification for Facelets in JSF 2.0 10-8

10.2.1

Specification of the ViewDeclarationLanguage Implementation for Facelets for JSF 2.0 10-9

XHTML Specification for Facelets for JSF 2.0 10-10

10.3.1

10.3.2
10.3.3

General Requirements 10-10

10.3.1.1 DOCTYPE and XML Declaration 10-10

Facelet Tag Library mechanism 10-10

Requirements specific to composite components 10—12

10.3.3.1 Declaring a composite component library for use in a Facelet page 10-12
10.3.3.2 Creating an instance of a top level component 1012

10.3.3.3 Populating a top level component instance with children 10-13

Standard Facelet Tag Libraries 10-14

10.4.1

JSF Core Tag Library 10-14

10.4.1.1 <fiajax> 10-14

10.4.1.2 <fievent> 10-18

10.4.1.3 <fimetadata> 10-18
10.4.1.4 <fivalidateBean> 10-18
10.4.1.5 <fivalidateRequired> 10-20
10.4.1.6 <fivalidateWholeBean> 10-21

Contents

XX

11.

10.5

10.4.1.7 <fiwebsocket> 10-22
10.4.2 Standard HTML RenderKit Tag Library 10-31
10.4.3 Facelet Templating Tag Library 10-32
10.4.4 Composite Component Tag Library 10-32
10.4.5 JSTL Core and Function Tag Libraries 10-32

Assertions relating to the construction of the view hierarchy 10-32

Using JSF in Web Applications 11-1

11.1

11.2

11.3

11.4

Web Application Deployment Descriptor 11-1
11.1.1 Servlet Definition 11-1
11.1.2 Servlet Mapping 11-2
11.1.3 Application Configuration Parameters 11-2
Included Classes and Resources 11-5
11.2.1 Application-Specific Classes and Resources 11-6
11.2.2 Servlet and JSP API Classes (javax.servlet.*) 11-6
11.2.3 JSP Standard Tag Library (JSTL) API Classes (javax.servlet.jsp.jstl.*) 11-6
11.2.4 JSP Standard Tag Library (JSTL) Implementation Classes 11-6
11.2.5 JavaServer Faces API Classes (javax.faces.*) 11-6
11.2.6 JavaServer Faces Implementation Classes 11-6
11.2.6.1 FactoryFinder 11-6
11.2.6.2 FacesServlet 11-7
11.2.6.3 UlComponentELTag 11-8
11.2.6.4 FacetTag 11-8
11.2.6.5 ValidatorTag 11-8
Deprecated APIs in the webapp package 11-9
11.3.1 AttributeTag 11-9
11.3.2 ConverterTag 11-9
11.3.3 UIComponentBodyTag 11-9
11.3.4 UIComponentTag 11-9
11.3.5 VvalidatorTag 11-9
Application Configuration Resources 11-9
11.4.1 Overview 11-9
11.4.2 Application Startup Behavior 11-10
11.4.2.1 Resource Library Contracts 11-11
11.4.3 Faces Flows 11-12
11.43.1 Defining Flows 11-12

xxi JavaServer Faces Specification « March 2017

12.

13.

11.5

11.4.4
11.4.5
11.4.6
11.4.7
11.4.8
11.4.9

11.43.2 Packaging Faces Flows in JAR Files 11-12
11.4.3.3 Packaging Flows in Directories 11-12
Application Shutdown Behavior 11-13

Application Configuration Resource Format 11-13
Configuration Impact on JSF Runtime 11-15
Delegating Implementation Support 11-17

Ordering of Artifacts 11-19

Example Application Configuration Resource 11-24

Annotations that correspond to and may take the place of entries in the Application Configuration
Resources 11-25

11.5.1

Requirements for scanning of classes for annotations 11-25

Lifecycle Management 12-1

12.1
12.2
12.3
12.4

Lifecycle 12-1

PhaseEvent 12-2

PhaseListener 12-2

LifecycleFactory 12-5

Ajax Integration 13-1

13.1

13.2
13.3

JavaScript Resource 13-1

13.1.1

JavaScript Resource Loading 13-1
13.1.1.1 The Annotation Approach 13-1
13.1.1.2 The Resource API Approach 13-2

13.1.1.3 The Page D eclaration Language Approach 13-3

JavaScript Namespacing 13-3

Ajax Interaction 13-3

13.3.1
13.3.2
13.3.3
1334
13.3.5

13.3.6

Sending an Ajax Request 13-4

Ajax Request Queueing 13-4

Request Callback Function 13-4

Receiving The Ajax Response 13-4

Monitoring Events On The Client 13-4

13.3.5.1 Monitoring Events For An Ajax Request 13-5
13.3.5.2 Monitoring Events For All Ajax Requests 13-5
13.3.5.3 Sending Events 13-5

Handling Errors On the Client 13-5

13.3.6.1 Handling Errors For An Ajax Request 13-5
13.3.6.2 Handling Errors For All Ajax Requests 13-6

Contents

xxii

14.

15.

16.

13.3.6.3 Signaling Errors 13-6

13.3.7 Handling Errors On The Server 13-6

13.4 Partial View Traversal 13-6

13.4.1 Partial Traversal Strategy 13-7

13.4.2 Partial View Processing 13-7

13.4.3 Partial View Rendering 13-8

13.4.4 Sending The Response to The Client 13-8
13.4.4.1 Writing The Partial Response 13-8

JavaScript APT 14-1
14.1 Collecting and Encoding View State 14-1
14.1.1 Use Case 14-1
14.2 Initiating an Ajax Request 14-2
14.2.1 Usage 14-2
14.2.2 Keywords 14-3
14.2.3 Default Values 14-3
14.2.4 Request Sending Specifics 14-3
14.2.5 Use Case 14-4
14.3 Processing The Ajax Response 144
14.4 Registering Callback Functions 14—4
14.4.1 Request/Response Event Handling 14-5
144.1.1 Use Case 14-5
14.4.2 Error Handling 14-6
144.2.1 Use Case 14-6
14.5 Determining An Application’s Project Stage 14-7
14.5.1 Use Case 14-7
14.6 Script Chaining 14-7

Appendix A - JSF Metadata A-1
1.1 Required Handling of *-extension elements in the application configuration resources files A-1
1.1.1 faces-config-extension handling A-1
1.1.1.1 The facelets-processing eclement A-2
1.2 XML Schema Definition For Facelet Taglib A-3
1.2.1 Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to JSF 2.0 A-4
1.3 XML Schema Definition for Composite Components A—4

Appendix B - Change Log B-11

| xxiii ~ JavaServer Faces Specification » March 2017

Changes between 2.1 and 2.2 11

Big Ticket Features 11

Other Features, by Functional Area 11
Components/Renderers 11
Lifecycle 13
Platform Integration 14
Facelets/VDL 14
Spec Clarifications 15
Resources 16
Expression Language 17
Configuration and Bootstrapping 17
Miscellaneous 17

Backward Compatibility with Previous Versions 19

Breakages in Backward Compatibility 19

Changes between 2.1 and 2.2 20

Big Ticket Features 20

Other Features, by Functional Area 20
Components/Renderers 20
Lifecycle 21
Platform Integration 23
Facelets/VDL 23
Spec Clarifications 24
Resources 25
Expression Language 26
Configuration and Bootstrapping 26
Miscellaneous 26

Backward Compatibility with Previous Versions 28

Breakages in Backward Compatibility 28

Changes between 2.0 Revaand 2.1 29

2.1

Section 10.3.2 “Facelet Tag Library mechanism” 29
New feature: <facelets-processing> 29

Update schema for 2.1 29

Change Restore View Phase 29

Section 7.6.2 “Default ViewHandler Implementation” 29
Changes between 2.0 Final and 2.0 Reva B-30

Contents xxiv

Global changes 30
ExceptionQueuedEvent 30
Usage of the term "page" in the JSF 2.0 spec 30
Front Matter 31
Chapter 2 31
Section 2.2.1 “Restore View” 31
Section 2.5.2.4 “Localized Application Messages” 31
Section 2.5.7 “JSR 303 Bean Validation” 31

Section 2.5.7 “JSR 303 Bean Validation”needs to reference "Bean Validation Integration" section
31

Section 2.6.1.3 “Resource Identifiers” 31
Chapter 3 31
Clarify meaning of "javax.faces.bean" in Section 3.5.6.1 “Bean Validator Activation” 31

Need to be consistent between Section 3.4.3.4 “Declarative Listener Registration”of the JSF 2.0 Spec
and the VDLDoc for fievent 32

Typo in Section 3.4.3.4 “Declarative Listener Registration” of the JSF 2.0 Spec regarding
"beforeRender" 32

Section 3.5.3 “Validation Registration”, Section 3.6.1.1 “What does it mean to be a JSF User
Interface component?” 32

Section 3.6.2.1 “Composite Component Metadata” 32
Chapter 4 32

Section 4.1.19.4 “Events” 32

Chapter 7 33

Section 7.4.1 “Overview” 33

Section 7.4.2 “Default NavigationHandler Algorithm” 33

Section 7.6.2 “Default ViewHandler Implementation” 33
Chapter 9 33

Section 9.4.1 “<f:actionListener>" of Spec PDF -- Missing "for" attribute of f:actionListener in Spec
PDF 33

Section 9.4.1 “<f:actionListener>" and Section 9.4.19 “<f:valueChangeListener>" 33
Chapter 10 33

Section 10.3.1 “General Requirements” 34

Section 10.3.2 “Facelet Tag Library mechanism” 34

VDLDocs and PDL documentation 34

Possible error in section Section 10.4.1.1 “<f:ajax>" of the JSF 2.0 Spec regarding f:ajax and
h:panelGrid 34

Redundant mentioning of Facelets in Section 10.4.1.4 “<f:validateBean>" of the JSF 2.0 Spec 35

xxv JavaServer Faces Specification « March 2017

2.2

Availability of fivalidateBean and f:validateRequired in JSP 35
Chapter 13 35
Redundancy in Section 13.4.2 “Partial View Processing” of the JSF 2.0 Spec 35
"Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec 35
Chapter 14 35
Section 14.2 “Initiating an Ajax Request” Typo in table 14.2.2 of the JSF 2.0 Spec 35
Section 14.4.1 “Request/Response Event Handling”Table 14.4.1 36
Appendix A Metadata 36

Section 1.2.1 “Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to JSF
2.0 36

VDLDoc changes 36
Typo in fiselectltems VDLDocs 36
Need clarification on execute attribute of f:ajax 36
Spelling error in VDLDocs for f:ajax 36

Need clarification on required attribute in VDLDocs for tags that got a new "for" attribute in JSF
2.0 37

Uppercase typo in VDLDocs for fievent 37
Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs 37
Need clarification in VDLDocs for fimetadata 37
Missing description in VDLDocs for name attribute of f:viewParam 37
VLDDocs on "for" attribute of f:viewParam claim it can be used ina CC 37
Miscellaneous VDLDoc items 38
Should TLDDocs now be VDLDocs? 38
Typo in VDLDocs for fievent. 38

Accepted Changes from JCP Change Log for JSF 2.0 Reva 38

Changes between 1.2 Final and 2.0 Final B-45

Section 2.1 “Request Processing Lifecycle Scenarios” 45

Section 2.2 “Standard Request Processing Lifecycle Phases” 45

Section 2.2.1 “Restore View” 46

Section 2.2.2 “Apply Request Values” 46

Section 2.2.2.1 “Apply Request Values Partial Processing” 46

Section 2.2.3 “Process Validations” 46

Section 2.2.3.1 “Partial Validations Partial Processing” 46

Section 2.2.4 “Update Model Values” 46

Section 2.2.4.1 “Update Model Values Partial Processing” 46

Section 2.2.6 “Render Response” 46

Contents xxvi

Section 2.5.2.4 “Localized Application Messages” 47
Section 2.5.4 “Resource Handling” 47

Section 2.5.5 “View Parameters” 47

Section 2.5.6 “Bookmarkability” 47

Section 2.5.7 “JSR 303 Bean Validation” 47

Section 2.5.8 “Ajax” 47

Section 2.5.9 “Component Behaviors” 47

New Section 2.6 “Resource Handling” 47

New Section 2.6.2 “Rendering Resources” 47

New Section 2.6.2.1 “Relocatable Resources” 48

New Section 2.6.2.2 “Resource Rendering Using Annotations”
Section 3.1.8 “Component Tree Navigation” 48
Section 3.1.10 “Managing Component Behavior” 48
Section 3.1.11 “Generic Attributes” 48

Section 3.1.11.1 “Special Attributes” 48

Section 3.1.13 “Component Specialization Methods” 48
Section 3.1.14 “Lifecycle Management Methods” 48
Section 3.1.15 “Utility Methods” 48

Section 3.2.6.1 “Properties” 49

Section 3.2.7.2 “Methods” 49

Section 3.2.8 “SystemEventListenerHolder” 49
Section 3.3.2 “Converter” 49

Section 3.4.1 “Overview” 49

Section 3.4.2.6 “Event Broadcasting” 49

Section 3.4.3.1 “Event Classes” 49

Section 3.4.3.4 “Declarative Listener Registration” 49
Section 3.4.3.5 “Listener Registration By Annotation” 49
Section 3.5.2 “Validator Classes” 50

Section 3.5.2 “Validator Classes” 50

Section 3.5.2 “Validator Classes” 50

Section 3.5.3 “Validation Registration” 50

Section 3.5.5 “Standard Validator Implementations” 50
Section 3.5.6 “Bean Validation Integration” 50

Section 3.7 “Component Behavior Model” 50

Section 4.1.19.2 “Properties” 50

xxvii JavaServer Faces Specification « March 2017

48

Specify the viewMap property on UIViewRoot. 50

Section 4.1.19.3 “Methods” 50

Section 4.1.19.4 “Events” 50

Section 4.1.19.5 “Partial Processing” 51

Section 4.2.1.2 “Methods” 51

Section 3.6 “Composite User Interface Components” 51
Section 5.2.1 “MethodExpression Syntax and Semantics” 51
Section 5.4.2 “Managed Bean Lifecycle Annotations” 51

Section 5.6.1.1 “Faces Implicit Object ELResolver For JSP” and Section 5.6.2.1 “Implicit Object ELResolver
for Facelets and Programmatic Access” 51

Section 5.6.1.2 “ManagedBean ELResolver” 51

Section 5.6.2.1 “Implicit Object ELResolver for Facelets and Programmatic Access” 51
Section 5.6.2.5 “Resource ELResolver” 52

This section specifies the behavior of the Resource EL Resolver 52
Section 5.6.2.2 “Composite Component Attributes ELResolver” 52
Section 5.6.2.9 “ScopedAttribute ELResolver” 52

Section 6.1.2 “Attributes” 52

Section 6.1.8 “ResponseStream and ResponseWriter” 52

Section 6.1.10 “Partial Processing Methods” 52

Section 6.1.11 “Partial View Context” 52

Section 6.1.12 “Access To The Current FacesContext Instance” 52
Section 6.1.13 “CurrentPhaseld” 52

Section 6.2 “ExceptionHandler” 52

Section 6.7 “ExceptionHandlerFactory” 53

Section 6.8 “ExternalContextFactory” 53

Section 7.1.9 “ProjectStage Property” 53

Section 7.1.14 “System Event Methods” 53

Section 7.4.2 “Default NavigationHandler Algorithm” 53

Section 7.6.1 “Overview” 53

Section 7.6.2 “Default ViewHandler Implementation” 53

Section 7.7 “ViewDeclarationLanguage” 53

Section 8.1 “RenderKit” 54

Section 8.2 “Renderer” 54

Section 8.3 “ClientBehaviorRenderer” 54

Section 9.4.3 “<f:convertDateTime>" 54

Section 9.4.4 “<f:convertNumber>" 54

Contents xxviii

Section 9.4.14 “<f:validateDoubleRange>" 54

Section 9.4.16 “<f:validateRegex>" 54

Section 9.4.17 “<f:validateLongRange>" 54

Section 9.4.21 “<fiview>” 54

Section “Facelets and its use in Web Applications” 54
Section 10.4.1.1 “<f:ajax>" 55

Section “Override default Ajax action. “buttonl” is associated with the Ajax “execute="cancel’” action:”
55

Section 10.4.1.5 “<f:validateRequired>" 55

Section 11.1.3 “Application Configuration Parameters” 55
Section 11.4.2 “Application Startup Behavior” 55

Section 11.4.6 “Configuration Impact on JSF Runtime” 55
Section 11.4.7 “Delegating Implementation Support” 56
Section 11.4.8 “Ordering of Artifacts” 56

Section 11.5 “Annotations that correspond to and may take the place of entries in the Application
Configuration Resources” 56

Section 12.2 “PhaseEvent” 56

Chapter 13 “Ajax Integration 56

Section 13.1 “JavaScript Resource” 56

Section 13.1.1 “JavaScript Resource Loading” 56

Section 13.1.1.1 “The Annotation Approach” 56

Section 13.1.1.2 “The Resource API Approach” 56

Section 13.1.1.3 “The Page D eclaration Language Approach” 57
Section 13.2 “JavaScript Namespacing” 57

Section 13.3 “Ajax Interaction” 57

Section 13.3.1 “Sending an Ajax Request” 57

Section 13.3.2 “Ajax Request Queueing” 57

Section 13.3.3 “Request Callback Function” 57

Section 13.3.4 “Receiving The Ajax Response” 57

Section 13.3.5 “Monitoring Events On The Client” 57

Section 13.3.5.1 “Monitoring Events For An Ajax Request” 57
Section 13.3.5.2 “Monitoring Events For All Ajax Requests” 58
Section 13.3.5.3 “Sending Events” 58

Section 13.3.6 “Handling Errors On the Client” 58

Section 13.3.6.1 “Handling Errors For An Ajax Request” 58
Section 13.3.6.2 “Handling Errors For All Ajax Requests” 58

| xxix JavaServer Faces Specification » March 2017

Section 13.3.6.3 “Signaling Errors” 58

Section 13.3.7 “Handling Errors On The Server” 58

Section 13.4 “Partial View Traversal” 58

Section 13.4.1 “Partial Traversal Strategy” 58

Section 13.4.2 “Partial View Processing” 59

Section 13.4.3 “Partial View Rendering” 59

Section 13.4.4 “Sending The Response to The Client” 59

Section 13.4.4.1 “Writing The Partial Response” 59

Chapter 14 “JavaScript API 59

Section 14.1 “Collecting and Encoding View State” 59

Section 14.1.1 “Use Case” 59

Section 14.2 “Initiating an Ajax Request” 59

Section 14.2.1 “Usage” 59

Section 14.2.3 “Default Values” 59

Section 14.2.4 “Request Sending Specifics” 60

Section 14.2.5 “Use Case” 60

Section 14.5 “Determining An Application’s Project Stage” 60

Section 14.4 “Registering Callback Functions” 60

Section 14.4.1 “Request/Response Event Handling” 60

Section 14.4.1.1 “Use Case” 60

Section 14.4.2 “Error Handling” 60

Section 14.4.2.1 “Use Case” 60

Section 14.5 “Determining An Application’s Project Stage” 60

Section 14.5.1 “Use Case” 60

Section 14.6 “Script Chaining” 61

Javadoc XML Schema section 61

Section 1.3 “XML Schema Definition for Composite Components” 61

Standard HTML RenderKit specification 61
component-family: javax.faces.Graphic renderer-type: javax.faces.Image 61
component-family: javax.faces.Output renderer-type: javax.faces.Body 61
component-family: javax.faces.Output renderer-type: javax.faces.Head 61
component-family: javax.faces.Output renderer-type: javax.faces.resource.Script 61
component-family: javax.faces.Output renderer-type: javax.faces.resource.Stylesheet 61

General Changes 61

2.3 Changes Between 1.1 and 1.2 B-62

Contents

XXX

Unified Expression Language (EL) 62

2.3.0.1 Guide to Deprecated Methods Relating to the Unified EL and their Corresponding
Replacements B-62

Guide to Deprecated Methods Relating to State Management and their Corresponding
Replacements 65

JavaServer Faces 1.2 Backwards Compatibility 65

Breakages in Backwards Compatability 66

General changes 66

Preface 69

Section 2.2.1 “Restore View” 69

Section 2.2.6 “Render Response” 69

XXXi

Section 2.4.2.1 “Create A New View” 69

Section 2.5.2.4 “Localized Application Messages” 70
Section 3.1.11 “Generic Attributes” 70

Section 3.1.13 “Component Specialization Methods” 70

Add new method, encodeAll(), which is now the preferred method for developers to call to render a
child or facet(). 70

Section 4.1.4 “UlForm” 70

UlData Section 4.1.3.2 “Properties” 70

UlInput Section 4.1.6 “Ullnput” 70

UlInput Section 4.1.6.3 “Methods” 70

Section 4.1.19 “UlViewRoot” 70

Section 5.1.2 and 5.1.3 “ValueExpression Syntax” and “ValueExpression Semantics” 70
Section 5.2.1 “MethodExpression Syntax and Semantics” 70

Section 5.4 “Managed Bean Annotations” 71

Section 5.5.3 “ExpressionFactory” 71

Section 5.6.1.4 “ResourceBundle ELResolver for JSP Pages” 71

Section 7.6.1 “Overview” ViewHandler 71

Section 7.6.2 “Default ViewHandler Implementation” 71

State Saving Section 7.8.1 “Overview” 71

Section 7.8.2 “State Saving Alternatives and Implications” 71

Section 8.4 “ResponseStateManager” 72

Section 9.1 “UlComponent Custom Actions” 72

Section 9.2.8 “Interoperability with JSP Template Text and Other Tag Libraries” 72
Section “Integration with JSP” 72

Section 9.3.1.2 “Faces 1.0 and 1.1 Taglib migration story” 72

JavaServer Faces Specification + March 2017

Section 9.4 “JSF Core Tag Library” 72

Section 9.4.2 “<f:attribute>" 72

Section 9.4.12 “<f:setPropertyActionListener>" 73
Section 9.4.21 “<fiview>” 73

Section 9.5 “Standard HTML RenderKit Tag Library” 73
Section 11.2.6.2 “FacesServlet” 73

Section 11.3 “Deprecated APIs in the webapp package” 73
Section 11.4.2 “Application Startup Behavior” 73

Contents xxxii

xxxiii

JavaServer Faces Specification « March 2017

Preface

This is the JavaServer Faces 2.3 (JSF 2.3) specification, developed by the JSR-372 expert group under the Java
Community Process (see <http://www.jcp.org> for more information about the JCP).

Changes between 2.2 and 2.3

This section gives the reader a survey of the changes between this version of the specification and the previous version,
using the categories from the issue tracker at < http://jsf-spec.java.net/issues/ >.

Big Ticket Features

WebSocket Integration

Issue ID 1396

See the VDLDocs for <f:websocket /> and Section 10.4.1.7 “<f:websocket>".
Multi-field Validation

Issue ID 1

See the VDLDocs for <f:validateWholeBean />.

Java Time Support

Issue ID 1370

See the VDLDocs for <f:convertDateTime />.

Use CDI for evaluation of JSF specific EL implicit Objects

Issue ID 1311, 1328,1334,1332,1331,1328,1384,1385,1383,1386 - 1394
See Section 5.9.2 “EL Resolution”

Issue ID 1417

Deprecate javax.faces.bean.

Support @Inject on JSF specific artifacts

Issue ID 1316,527,1309,1323,1283,1353,1335,1333,1323,1349,1351,1350,1345

See Section 5.9.1 “JSF Objects Valid for @Inject Injection”

Preface 1

UlData and <ui:repeat> supports Map and Iterable

Issue ID 1102

ui:repeat condition check.

Issue ID 1418

CDI Replacement for @ManagedProperty. See javadocs for javax.faces.annotation.ManagedProperty.
Issue ID 1103, 1364

See the Javadoc for javax.faces.component.UIData, and javax.faces.model.IterableDataModel.
DataModel implementations can be registered

Issue ID 1078

See the javadoc for annotation javax.faces.model.FacesDataModel.

Issue ID 1412

See the javadoc for annotation javax.faces.partialViewContext.getEvalScripts ().

Issue ID 613

Ajax Method Invocation. See vdldoc for <h:commandScript>.

Issue ID 1238

Enhanced component search facility. See the javadoc for package javax.faces.component.search.

Other Features, by Functional Area

Components/Renderers

Larger Changes

Issue ID 217

styleClass attribute added to h:column

Issue ID 329

Add “group” attribute to <h:selectOneRadio>.
Issue ID 1423,1404

ResourceHandler.markResourceRendered(), and isResourceRendered(), UIViewRoot.getComponentResources() enable
the discovery of dynamically added resources, even within Ajax requests.

Issue ID 1404

Add API to check if a resource has already been rendered. See Javadoc for
javax.faces.application.ResourceHandler.markResourceRendered () and
isResourceRendered().

Issue ID 1436

In Section 2.2.6 “Render Response”, specify how Server Push is utilized.

| 2 JavaServer Faces Specification « March 2017

Smaller Changes

Issue ID 1422

UlSelectMany detects converter based on first item.

Issue ID 1007

Explicit support for dynamic component manipulation
Issue ID 819

Add “disabled” attribute for h:button

Issue ID 1300

UIViewRoot.getViewMap () and publishEvent ().

Issue ID 1229

Document UIData.setRowStatePreserved () in VDLDoc and RenderKit Doc.

Issue ID 1135

Add PostRenderViewEvent.

Issue ID 1258

Clarify text escaping for <h:outputText> or equivalent EL expressions.
Issue ID 807

Pass FacesContext to system event listeners.

Issue ID 1113

Remove onselect attribute from SELECT components.

Issue ID 1433

Add a context-param to enable forcing validation to happen even when there is no parameter corresponding to the

current component.

Lifecycle

Larger Changes
Issue ID 790

javax.faces.ViewState and ajax with cross form submit.

Smaller Changes

Issue ID 473
FacesEvent.getFacesContext().
Issue ID 1241

faces-config supports client-window-factory.

Issue ID 1346

Preface

3

Simplify decoration of FaceletCacheFactory.

Issue ID 1361

Correct oversight regarding re-entrancy of flow scoped beans.

Issue ID 821

Implement ExternalContext.getRealPath () on startup and shutdown.
Issue ID 1401

Explicitly prohibit using NavigationHandler from within ExceptionHandler invoked during RENDER
RESPONSE.

Issue ID 1306

@FlowScoped should be @NormalScope (passivating=true) .
Issue ID 1382

Generify return from ExternalContext.getInitParameterMap ().
Issue ID 1329

@NotNull and <f:viewParam>.

Issue ID 1403

Allow entry into flow via <f:viewAction>.

Issue ID 1216

Improve consistency in handling PhaseListener instances registered on UIViewRoot components.
Issue ID 1435

Add ResourceHandler.getViewResources() method.

Platform Integration
Issue ID 1379

ExternalContext.getResponseCharacterEncoding () and Portlet 3.0.

Facelets/VDL

Larger Changes
Issue ID 1424

Add tag <f:importConstants>, see VDLDoc for that tag.

Smaller Changes
Issue ID 1362
Revisit some cardinality rules regarding <tag> and <component> elements.

Issue ID 936

| 4 JavaServer Faces Specification « March 2017

Set FACELETS REFRESH PERIOD to -1 if ProjectStage is Production.

Spec Clarifications

Issue ID 1254

Loosen language regarding the contracts attribute on <f:view>.
Issue ID 1338

Clarify pseudocode for resource libraries.

Issue ID 1279

Specify Ullnput.isEmpty()

Issue ID 1242

Remove mentione of OpenAjax hub.

Issue ID 1215

Additional warning on DelegatingMetaTagHandler.getTagHandlerDelegate.
Issue ID 1131

“name” attribute not required.

Issue ID 1270

TagDecorator spec namespace modifications.

Issue ID 1401

Advisory text for ExceptionHandler.

Issue ID 1402

Explicitly declare that flow eagerness not supported.

Issue ID 677

Document automatic UIPanel behavior for f:facet.

Issue ID 1095

Description for “rendered” attribute for repeat and fragment.
Issue ID 1066

Application.getNavigationHandler() and application element.
Issue ID 803

VisitHint. EXECUTE_LIFECYCLE clarifications.

Issue ID 1217

EnumConverter.getAsString() clarifications.

Issue ID 1356

Ullnput.processValidators() clarifications.

Issue ID 1424

Preface

5

Public constants for source, behavior, and partial.event. See the Javadocs for
javax.faces.component.behavior.ClientBehaviorContext, and
javax.faces.conetxt.PartialViewContext.

Issue ID 1428
API constants for jsf.js and javax.faces in JavaScript.
Issue ID 1260

Support for exact mapping of FacesServlet. See Section 7.6.2.1 “ViewHandler Methods that Derive Information From
the Incoming Request” and Section 7.6.2.3 “ViewHandler Methods Relating to Navigation”.

Issue ID 1250

Fix entries in table Section TABLE 5-3 “JSF Artifacts Eligible for Injection”.
Resources

Larger Changes

Smaller Changes

Expression Language.

Configuration and Bootstrapping

Miscellaneous

Issue ID 1225

Clarify requirements to support BCP-47 regarding localization. See Section 2.5.2.1 “Determining the active Locale”
Issue ID 1429

Add constructor to make wrapping easier.

Issue ID 1430

Leverage Java SE 8 repeatable annotations where appropriate.

Backward Compatibility with Previous Versions

JSF 2.3 is fully backward compatible with previous releases of JSF, unless any of the following context-parameter values
are specified. See Section 11.1.3 “Application Configuration Parameters” for details.

javax.faces. ALWAYS_PERFORM_VALIDATION WHEN REQUIRED IS _TRUE
javax.faces.DISABLE_FACESSERVLET TO XHTML

javax.faces. VIEWROOT_PHASE LISTENER QUEUES_EXCEPTIONS.

| 6 JavaServer Faces Specification « March 2017

JSF 2.3 is fully backward compatible with previous releases of JSF unless a CDI managed bean is included in the
application with the annotation @javax.faces.annotation.FacesConfig. See the javadocs for that annotation
for details.

Breakages in Backward Compatibility

Related Technologies

Other Java™ Platform Specifications

JSF is based on the following Java API specifications:

» JavaServer Pages™ Specification, version 2.2 (JSP™), including Expression Language 2.2
<http://jcp.org/aboutJava/communityprocess/mrel/jsr245/>

» Expression Language 3.0 <http://jcp.org/en/jst/detail?id=341> (optional)

» Java™ Servlet Specification, version 4.0 (Servlet) <http://jcp.org/en/jst/detail?id=369>

» Java™ Platform, Enterprise Edition, version 8.0 <http://jcp.org/en/jsr/detail?id=366>

» Contexts and Dependency Injection for Java 2.0 <http://jcp.org/en/jsr/detail?id=365>

» Java™ Platform, Standard Edition, version 8.0 <http://jcp.org/en/jsr/detail?id=337>

» JavaBeans™ Specification, version 1.0.1 <http://www.oracle.com/technetwork/java/javase/documentation/spec-
136004.htm]>

» JavaServer Pages™ Standard Tag Library, version 1.2 (JSTL) <http://jcp.org/en/jsr/detail ?1d=52>
> Java™ API for WebSocket, version 1.1 <https://www.jcp.org/en/jsr/detail?id=356>
» Java™ API for JSON-Processing, version 1.1 <https://www.jcp.org/en/jsr/detail?id=353>

Therefore, a JSF container must support all of the above specifications. This requirement allows faces applications to be
portable across a variety of JSF implementations.

In addition, JSF is designed to work synergistically with other web-related Java APIs, including:
» Portlet Specification, 1.0 JSR-168 <http://jcp.org/en/jsr/detail?id=168>

» Portlet Specification, 2.0 JSR-286 <http://jcp.org/en/jsr/detail?id=286>

» Portlet Specification, 3.0 JSR-286 <http://jcp.org/en/jsr/detail?id=362>

» JSF Portlet Bridge Specification, JSR-301 <http://jcp.org/en/jsr/detail?id=301>

Related Documents and Specifications

The following documents and specifications of the World Wide Web Consortium will be of interest to JSF implementors,
as well as developers of applications and components based on JavaServer Faces.

» Hypertext Markup Language (HTML), version 4.01 <http://www.w3.org/TR/html4/>
» Extensible HyperText Markup Language (XHTML), version 1.0 <http://www.w3.org/TR/xhtml1>
» Extensible Markup Language (XML), version 1.0 (Second Edition) <http://www.w3.org/TR/REC-xmI>

The class and method Javadoc documentation for the classes and interfaces in javax.faces (and its subpackages) are
incorporated by reference as requirements of this Specification.

The JSP and Facelet tag library for the HTML BASIC standard RenderKit is specified in the VDLDocs and incorporated
by reference in this Specification.

Preface 7

Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in

» Key words for use in RFCs to Indicate Requirement Levels (RFC 2119) <http://www.rfc-editor.org/rfc/rfc2119.txt>

Providing Feedback

We welcome any and all feedback about this specification. Please email your comments to <users@javaserverfaces-spec-
public.java.net>.

Please note that, due to the volume of feedback that we receive, you will not normally receive a reply from an engineer.
However, each and every comment is read, evaluated, and archived by the specification team.

Acknowledgements

The JavaServer Faces Specification (version 2.3) is the result of the diligent efforts of the JSR-372 Expert Group,
working under the auspices of the Java Community Process. The Expert Group is

> Frank Caputo

» Cagatay Civici
> Ken Fyten

2 Neil Griffin

» Josh Juneau

» Brian Leatham
- Kito Mann

2 Michael Miiller
> Paul Nicolucci
» Bauke Scholtz
» Arjan Tijms

» Leonardo Uribe

The editors would like to recognize the following individuals who have contributed to the success of JavaServer Faces
over the years.

Dan Allen Thomas Andraschko
Thomas Asel Jennifer Ball
Lincoln Baxter 111 Hans Bergsten
Shawn Bayern Joseph Berkovitz
Dennis Byrne Pete Carapetyan
Ryan DeLaplante Keith Donald

Jim Driscoll
Ken Finnigan
Mike Freedman
Manfred Geiler
Juan Gonzalez
Rick Hightower

Justyna Horwat

Hanspeter Duennenberger
Amy Fowler

David Geary

Ted Goddard

Jeremy Grelle

Jacob Hookom

Alexander Jesse

| 8 JavaServer Faces Specification « March 2017

Max Katz
Gavin King
Eric Lazarus
Felipe Leme
Alberto Lemos
Barbara Louis
Kumar Mettu
Pete Muir
Michael Miiller
Brendan Murray
Imre Osswald
Ken Paulsen
Raj Premkumar
Matt Raible
Andy Schwartz
Stan Silvert
Bernhard Slominski
Thomas Spiegel
James Strachan
Ana von Klopp
Adam Winer
John Zukowski

Roger Keays

Roger Kitain

Jason Lee

Cody Lerum

Ryan Lubke

Martin Marinschek
Craig McClanahan
Bernd Miiller

Hans Muller
Michael Nash

Joe Ottinger

Dhiru Pandey
Werner Punz

Hazem Saleh

Yara Senger

Vernon Singleton
Alexander Smirnov
Kyle Stiemann
Jayashri Visvanathan
Matthias Wessendorf

Mike Youngstrom

Preface

9

10 JavaServer Faces Specification « March 2017

Overview

JavaServer Faces (JSF) is a user interface (UI) framework for Java web applications. It is designed to significantly ease
the burden of writing and maintaining applications that run on a Java application server and render their Uls back to a
target client. JSF provides ease-of-use in the following ways:

» Makes it easy to construct a UI from a set of reusable Ul components

» Simplifies migration of application data to and from the Ul

» Helps manage Ul state across server requests

> Provides a simple model for wiring client-generated events to server-side application code
> Allows custom Ul components to be easily built and re-used

Most importantly, JSF establishes standards which are designed to be leveraged by tools to provide a developer
experience which is accessible to a wide variety of developer types, ranging from corporate developers to systems
programmers. A “corporate developer” is characterized as an individual who is proficient in writing procedural code and
business logic, but is not necessarily skilled in object-oriented programming. A “systems programmer” understands
object-oriented fundamentals, including abstraction and designing for re-use. A corporate developer typically relies on
tools for development, while a system programmer may define his or her tool as a text editor for writing code.

Therefore, JSF is designed to be tooled, but also exposes the framework and programming model as APIs so that it can
be used outside of tools, as is sometimes required by systems programmers.

1.1

Solving Practical Problems of the Web

JSF’s core architecture is designed to be independent of specific protocols and markup. However it is also aimed directly
at solving many of the common problems encountered when writing applications for HTML clients that communicate via
HTTP to a Java application server that supports servlets and JavaServer Pages (JSP) based applications. These
applications are typically form-based, and are comprised of one or more HTML pages with which the user interacts to
complete a task or set of tasks. JSF tackles the following challenges associated with these applications:

» Managing Ul component state across requests

> Supporting encapsulation of the differences in markup across different browsers and clients

> Supporting form processing (multi-page, more than one per page, and so on)

» Providing a strongly typed event model that allows the application to write server-side handlers (independent of
HTTP) for client generated events

» Validating request data and providing appropriate error reporting

» Enabling type conversion when migrating markup values (Strings) to and from application data objects (which are
often not Strings)

» Handling error and exceptions, and reporting errors in human-readable form back to the application user

» Handling page-to-page navigation in response to UI events and model interactions.

Chapter 1 Overview 1-11

1.2

1.2.1

1.2.2

Specification Audience

The JavaServer Faces Specification, and the technology that it defines, is addressed to several audiences that will use
this information in different ways. The following sections describe these audiences, the roles that they play with respect
to JSF, and how they will use the information contained in this document. As is the case with many technologies, the
same person may play more than one of these roles in a particular development scenario; however, it is still useful to
understand the individual viewpoints separately.

Page Authors

A page author is primarily responsible for creating the user interface of a web application. He or she must be familiar
with the markup and scripting languages (such as HTML and JavaScript) that are understood by the target client devices,
as well as the rendering technology (such as JavaServer Pages) used to create dynamic content. Page authors are often
focused on graphical design and human factors engineering, and are generally not familiar with programming languages
such as Java or Visual Basic (although many page authors will have a basic understanding of client side scripting
languages such as JavaScript).

Page authors will generally assemble the content of the pages being created from libraries of prebuilt user interface
components that are provided by component writers, tool providers, and JSF implementors. The components themselves
will be represented as configurable objects that utilize the dynamic markup capabilities of the underlying rendering
technology. When JavaServer Pages are in use, for example, components will be represented as JSP custom actions,
which will support configuring the attributes of those components as custom action attributes in the JSP page. In
addition, the pages produced by a page author will be used by the JSF framework to create component tree hierarchies,
called “views”, that represent the components on those pages.

Page authors will generally utilize development tools, such as HTML editors, that allow them to deal directly with the
visual representation of the page being created. However, it is still feasible for a page author that is familiar with the
underlying rendering technology to construct pages “by hand” using a text editor.

Component Writers

Component writers are responsible for creating libraries of reusable user interface objects. Such components support the
following functionality:

» Convert the internal representation of the component’s properties and attributes into the appropriate markup language
for pages being rendered (encoding).

» Convert the properties of an incoming request—parameters, headers, and cookies—into the corresponding properties
and attributes of the component (decoding)

» Utilize request-time events to initiate visual changes in one or more components, followed by redisplay of the current
page.

» Support validation checks on the syntax and semantics of the representation of this component on an incoming
request, as well as conversion into the internal form that is appropriate for this component.

» Saving and restoring component state across requests

As will be discussed in Chapter 8 “Rendering Model,” the encoding and decoding functionality may optionally be
delegated to one or more Render Kits, which are responsible for customizing these operations to the precise requirements
of the client that is initiating a particular request (for example, adapting to the differences between JavaScript handling
in different browsers, or variations in the WML markup supported by different wireless clients).

The component writer role is sometimes separate from other JSF roles, but is often combined. For example, reusable
components, component libraries, and render kits might be created by:

» A page author creating a custom “widget” for use on a particular page

| 1-12 JavaServer Faces Specification » March 2017

1.2.3

1.2.4

> An application developer providing components that correspond to specific data objects in the application’s business
domain

» A specialized team within a larger development group responsible for creating standardized components for reuse
across applications

» Third party library and framework providers creating component libraries that are portable across JSF
implementations

» Tool providers whose tools can leverage the specific capabilities of those libraries in development of JSF-based
applications

» JSF implementors who provide implementation-specific component libraries as part of their JSF product suite

Within JSF, user interface components are represented as Java classes that follow the design patterns outlined in the
JavaBeans Specification. Therefore, new and existing tools that facilitate JavaBean development can be leveraged to
create new JSF components. In addition, the fundamental component APIs are simple enough for developers with basic
Java programming skills to program by hand.

Application Developers

Application Developers are responsible for providing the server-side functionality of a web application that is not
directly related to the user interface. This encompasses the following general areas of responsibility:

» Define mechanisms for persistent storage of the information required by JSF-based web applications (such as creating
schemas in a relational database management system)

» Create a Java object representation of the persistent information, such as Entity Enterprise JavaBeans (Entity EJBs),
and call the corresponding beans as necessary to perform persistence of the application’s data.

» Encapsulate the application’s functionality, or business logic, in Java objects that are reusable in web and non-web
applications, such as Session EJBs.

» Expose the data representation and functional logic objects for use via JSF, as would be done for any servlet- or JSP-
based application.

Only the latter responsibility is directly related to JavaServer Faces APIs. In particular, the following steps are required
to fulfill this responsibility:

> Expose the underlying data required by the user interface layer as objects that are accessible from the web tier (such
as via request or session attributes in the Servlet API), via value reference expressions, as described in Chapter 4
“Standard User Interface Components.”

» Provide application-level event handlers for the events that are enqueued by JSF components during the request
processing lifecycle, as described in Section 2.2.5 “Invoke Application”.

Application modules interact with JSF through standard APIs, and can therefore be created using new and existing tools
that facilitate general Java development. In addition, application modules can be written (either by hand, or by being
generated) in conformance to an application framework created by a tool provider.

Tool Providers

Tool providers, as their name implies, are responsible for creating tools that assist in the development of JSF-based
applications, rather than creating such applications directly. JSF APIs support the creation of a rich variety of
development tools, which can create applications that are portable across multiple JSF implementations. Examples of
possible tools include:

» GUI-oriented page development tools that assist page authors in creating the user interface for a web application

» IDEs that facilitate the creation of components (either for a particular page, or for a reusable component library)

» Page generators that work from a high level description of the desired user interface to create the corresponding page
and component objects

» IDEs that support the development of general web applications, adapted to provide specialized support (such as
configuration management) for JSF

> Web application frameworks (such as MVC-based and workflow management systems) that facilitate the use of JSF
components for user interface design, in conjunction with higher level navigation management and other services

Chapter 1 Overview 1-13

1.2.5

1.3

1.3.1

1.3.2

1.3.3

» Application generators that convert high level descriptions of an entire application into the set of pages, Ul
components, and application modules needed to provide the required application functionality

Tool providers will generally leverage the JSF APIs for introspection of the features of component libraries and render
kit frameworks, as well as the application portability implied by the use of standard APIs in the code generated for an
application.

JSF Implementors

Finally, JSF implementors will provide runtime environments that implement all of the requirements described in this
specification. Typically, a JSF implementor will be the provider of a Java 2 Platform, Enterprise Edition (J2EE)
application server, although it is also possible to provide a JSF implementation that is portable across J2EE servers.

Advanced features of the JSF APIs allow JSF implementors, as well as application developers, to customize and extend
the basic functionality of JSF in a portable way. These features provide a rich environment for server vendors to compete
on features and quality of service aspects of their implementations, while maximizing the portability of JSF-based
applications across different JSF implementations.

Introduction to JSF APIs

This section briefly describes major functional subdivisions of the APIs defined by JavaServer Faces. Each subdivision
is described in its own chapter, later in this specification.

package javax.faces

This package contains top level classes for the JavaServer(tm) Faces API. The most important class in the package is
FactoryFinder, which is the mechanism by which users can override many of the key pieces of the implementation
with their own.

Please see Section 11.2.6.1 “FactoryFinder”.

package javax.faces.application
This package contains APIs that are used to link an application’s business logic objects to JavaServer Faces, as well as

convenient pluggable mechanisms to manage the execution of an application that is based on JavaServer Faces. The main
class in this package is Application.

Please see Section 7.1 “Application”.

package javax.faces.component

This package contains fundamental APIs for user interface components.

Please see Chapter 3 “User Interface Component Model.

| 1-14 JavaServer Faces Specification » March 2017

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

package javax.faces.component.html

This package contains concrete base classes for each valid combination of component + renderer.

package javax.faces.context
This package contains classes and interfaces defining per-request state information. The main class in this package is

FacesContext, which is the access point for all per-request information, as well as the gateway to several other helper
classes.

Please see Section 6.1 “FacesContext”.

package javax.faces.convert

This package contains classes and interfaces defining converters. The main class in this package is Converter.

Please see Section 3.3 “Conversion Model”.

package javax.faces.el

As of version 1.2 of this specification, all classes and interfaces in this package have been deprecated in favor of the
Unified Expression Language (EL) from JSP 2.1.

Please see Chapter 5 “Expression Language and Managed Bean Facility.

package javax.faces.flowand javax.faces.flow.builder

The runtime API for Faces Flows.

Please see Section 7.5 “FlowHandler”.

package javax.faces.lifecycle

This package contains classes and interfaces defining lifecycle management for the JavaServer Faces implementation.
The main class in this package is Lifecycle. Lifecycle is the gateway to executing the request processing
lifecycle.

Please see Chapter 2 “Request Processing Lifecycle.

package javax.faces.event

This package contains interfaces describing events and event listeners, and concrete event implementation classes. All
component-level events extend from FacesEvent and all component-level listeners extend from FacesListener.

Please see Section 3.4 “Event and Listener Model”.

Chapter 1 Overview 1-15

1.3.11

1.3.12

1.3.13

package javax.faces.render
This package contains classes and interfaces defining the rendering model. The main class in this package is

RenderKit. RenderKit maintains references to a collection of Renderer instances which provide rendering
capability for a specific client device type.

Please see Chapter 8 “Rendering Model.

package javax.faces.validator

Interface defining the validator model, and concrete validator implementation classes.

Please see Section 3.5 “Validation Model”

package javax.faces.webapp

Classes required for integration of JavaServer Faces into web applications, including a standard servlet, base classes for
JSP custom component tags, and concrete tag implementations for core tags.

Please see Chapter 11 “Using JSF in Web Applications.

| 1-16 JavaServer Faces Specification » March 2017

Request Processing Lifecycle

Web user interfaces generally follow a pattern where the user-agent sends one or more requests to the server with the end
goal of displaying a user-interface. In the case of Web browsers, an initial HTTP GET or POST request is made to the
server, which responds with a document which the browser interprets and automatically makes subsequent requests on
the user’s behalf. The responses to each of these subsequent requests are usually images, JavaScript files, CSS Style
Sheets, and other artifacts that fit “into” the original document. If the JSF lifecycle is involved in rendering the initial
response, the entire process of initial request, the response to that request, and any subsequent requests made
automatically by the user-agent, and their responses, is called a Faces View Request/Response for discussion. The
following graphic illustrates a Faces View Request/Response.

Faces Run-Time Other Server
Endpoint

i]

Render Response

GET index.jsf

‘ Faces Response ‘

Full HTML Response

Faces Resource
Request |_

GETInage.pog Handle Resource Response

F|

T

‘ Faces Resource Response

|_____
l—

Bytes of image.png

‘ Non-Faces Request ‘

Faces View Request/Response

GET image2.gif

-4

‘ Nen-Faces Response ‘

Bytes of image2.gif

r

Each Faces View Request/Response goes through a well-defined request processing lifecycle made up of phases. There
are three different scenarios that must be considered, each with its own combination of phases and activities:

2 Non-Faces Request generates Faces Response
» Faces Request generates Faces Response
» Faces Request generates Non-Faces Response

Where the terms being used are defined as follows:
» Faces Response—A response that was created by the execution of the Render Response phase of the request

processing lifecycle.

» Non-Faces Response—A response that was not created by the execution of the render response phase of the request
processing lifecycle. Examples would be a servlet-generated or JSP-rendered response that does not incorporate JSF
components, a response that sets an HTTP status code other than the usual 200 (such as a redirect), or a response

Chapter 2 Request Processing Lifecycle 2-1

whose HTTP body consists entirely of the bytes of an in page resource, such as a JavaScript file, a CSS file, an image,
or an applet. This last scenario is considered a special case of a Non-Faces Response and will be referred to as a
Faces Resource Response for the remainder of this specification.

» Faces Request—A request that was sent from a previously generated Faces response. Examples would be a hyperlink
or form submit from a rendered user interface component, where the request URI was crafted (by the component or
renderer that created it) to identify the view to use for processing the request. Another example is a request for a
resource that the user-agent was instructed to fetch an artifact such as an image, a JavaScript file, a CSS stylesheet, or
an applet. This last scenario is considered a special case of a Faces Request and will be referred to as a Faces
Resource Request for the remainder of this specification.

> Non-Faces Request—A request that was sent to an application component (e.g. a servlet or JSP page), rather than
directed to a Faces view.

In addition, of course, your web application may receive non-Faces requests that generate non-Faces responses. Because
such requests do not involve JavaServer Faces at all, their processing is outside the scope of this specification, and will
not be considered further.

READER NOTE: The dynamic behavior descriptions in this Chapter make forward references to the sections that
describe the individual classes and interfaces. You will probably find it useful to follow the reference and skim the
definition of each new class or interface as you encounter them, then come back and finish the behavior description.
Later, you can study the characteristics of each JSF API in the subsequent chapters.

2.1

2.1.1

2.1.2

Request Processing Lifecycle Scenarios

Each of the scenarios described above has a lifecycle that is composed of a particular set of phases, executed in a
particular order. The scenarios are described individually in the following subsections.

Non-Faces Request Generates Faces Response

An application that is processing a non-Faces request may use JSF to render a Faces response to that request. In order to
accomplish this, the application must perform the common activities that are described in the following sections:

» Acquire Faces object references, as described in Section 2.4.1 “Acquire Faces Object References”, below.
» Create a new view, as described in Section 2.4.2 “Create And Configure A New View”, below.
» Store the view into the FacesContext by calling the setViewRoot () method on the FacesContext.

Faces Request Generates Faces Response

The most common lifecycle will be the case where a previous Faces response includes user interface controls that will
submit a subsequent request to this web application, utilizing a request URI that is mapped to the JSF implementation’s
controller, as described in Section 11.1.2 “Servlet Mapping”. Because such a request will be initially handled by the JSF

2-2 JavaServer Faces Specification « January 2017

implementation, the application need not take any special steps—its event listeners, validators, and application actions
will be invoked at appropriate times as the standard request processing lifecycle, described in the following diagrams, is

invoked.
T start
Handle Resource

[Yes] SELRCE TR Serve Up Resource
isAesourceRequest Request SEalC TESa0reE Bytes
[No]
Execute and Render
Lifecycle

The “Handle Resource Request” box, and its subsequent boxes, are explained in Section 2.6 “Resource Handling”. The
following diagram explains the “Execute and Render Lifecycle” box.

Fender Responze wir walidation § Conversion |
T s Errors | Render Response |

Response Response :
Complete Complete !
i i i
1 | 1
i i 1
|
1
Apply Request | Process Process Process !
Yalues "1 Ewernts Walidations ™ Events :
]
I
: i |
' . '
Render Response ! H 1
PR H]
H]
TTTTTTT Response Response i H
: Complete Complete i '
| I g | i
1 ! ! i .
1 1 H
1 1 !
! Response Render 11| Process | Invoke | Process | | Updste Model || | .
: e Everts A plication | Ewents Values H :
: . i ;
1 H :]
1 H 1 I
. i i |
I H '
[Render Conversion Errors [: i i
i i
1 1
1 1
! |

The behavior of the individual phases of the request processing lifecycle are described in individual subsections of
Section 2.2 “Standard Request Processing Lifecycle Phases”. Note that, at the conclusion of several phases of the request
processing lifecycle, common event processing logic (as described in Section 2.3 “Common Event Processing”) is
performed to broadcast any FacesEvents generated by components in the component tree to interested event listeners.

2.1.3 Faces Request Generates Non-Faces Response

Normally, a JSF-based application will utilize the Render Response phase of the request processing lifecycle to actually
create the response that is sent back to the client. In some circumstances, however, this behavior might not be desirable.
For example:

» A Faces Request needs to be redirected to a different web application resource (via a call to
HttpServletResponse.sendRedirect).

» A Faces Request causes the generation of a response using some other technology (such as a servlet, or a JSP page
not containing JSF components).

» A Faces Request causes the generation of a response simply by serving up the bytes of a resource, such as an image,
a JavaScript file, a CSS file, or an applet

Chapter 2 Request Processing Lifecycle 2-3

In any of these scenarios, the application will have used the standard mechanisms of the servlet or portlet API to create
the response headers and content. It is then necessary to tell the JSF implementation that the response has already been
created, so that the Render Response phase of the request processing lifecycle should be skipped. This is accomplished
by calling the responseComplete () method on the FacesContext instance for the current request, prior to
returning from event handlers or application actions.

2.2

2.2.1

Standard Request Processing Lifecycle Phases

The standard phases of the request processing lifecycle are described in the following subsections.

[P1-start-currentPhaseld] The default request lifecycle processing implementation must ensure that the
currentPhaseld property of the FacesContext instance for this request is set with the proper PhaseId constant
for the current phase as early as possible at the beginning of each phase.[P1-end]

Restore View

[P1-start-restoreView]The JSF implementation must perform the following tasks during the Restore View phase of the
request processing lifecycle:

» Call initView () on the ViewHandler. This will set the character encoding properly for this request.
» Examine the FacesContext instance for the current request. If it already contains a UIViewRoot:

» Set the locale on this UIViewRoot to the value returned by the getRequestLocale () method on the
ExternalContext for this request.

» Take no further action during this phase, and return. The presence of a UI'ViewRoot already installed in the
FacesContext before the Restore View Phase implementation indicates that the phase should assume the view has
already been restored by other means.

> Derive the viewId according to the following algorithm, or one semantically equivalent to it.

> Look in the request map for a value under the key javax.servlet.include.path info. If found, let it be
the viewId.

» Call getRequestPathInfo () on the current ExternalContext. If this value is non-null, let this be the
viewId.

> Look in the request map for a value under the key javax.servlet.include.servlet path. If found, let
it be the viewId.

> If none of these steps yields a non-null viewld, throw a FacesException with an appropriate localized
message.

» Determine if this request is a postback or initial request by executing the following algorithm. Find the render-kit-id
for the current request by calling calculateRenderKitId () on the Application’s ViewHandler. Get that
RenderKit’s ResponseStateManager and call its isPostback () method, passing the current
FacesContext. If the current request is an attempt by the servlet container to display a servlet error page, do not
interpret the request as a postback, even if it is indeed a postback.

» If the request is a postback, call setProcessingEvents (false) on the current FacesContext. Then call
ViewHandler.restoreView (), passing the FacesContext instance for the current request and the view
identifier, and returning a UIViewRoot for the restored view. If the return from ViewHandler.restoreView ()
is null, throw a ViewExpiredException with an appropriate error message.
javax.faces.application.ViewExpiredException isa FacesException that must be thrown to
signal to the application that the expected view was not returned for the view identifier. An application may choose to
perform some action based on this exception.

2-4 JavaServer Faces Specification « January 2017

2.2.2

Store the restored UIViewRoot in the FacesContext.
Call setProcessingEvents (true) on the current FacesContext.

» If the request is not a postback, try to obtain the ViewDeclarationLanguage from the ViewHandler, for the
current viewId by calling ViewHandler.deriveLogicalViewId () and passing the result to
ViewHandler.getViewDeclarationLanguage (). If no such instance can be obtained, call
facesContext.renderResponse (). Otherwise, call getViewMetadata () on the
ViewDeclarationLanguage instance. If the result is non-null, call createMetadataView () on the
ViewMetadata instance. Call ViewMetadata.hasMetadata (), passing the newly created viewRoot. If this
method returns false, call facesContext.renderResponse (). If it turns out that the previous call to
createViewMetadata () did not create a UIViewRoot instance, call createView () on the ViewHandler.

View Protection

Call ViewHandler.getProtected ViewsUnmodifiable() to determine if the view for this viewld is protected. If not,
assume the requested view is not protected and take no additional view protection steps. Obtain the value of the
value of the request parameter whose name is given by the value of

ResponseStateManager NON_POSTBACK VIEW_TOKEN_ PARAM. If there is no value, throw
ProtectedViewException. If the value is present, compare it to the return from
ResponseStateManager.getCryptographicallyStrongTokenFromSession(). If the values do not match, throw
ProtectedViewException. If the values do match, look for a Referer [sic] request header. If the header is present, use
the protected view API to determine if any of the declared protected views match the value of the Referer header. If
so, conclude that the previously visited page is also a protected view and it is therefore safe to continue. Otherwise,
try to determine if the value of the Referer header corresponds to any of the views in the current web application. If
not, throw a ProtectedViewException. If the Origin header is present, additionally perform the same steps as with the
Referer header.

Call renderResponse () on the FacesContext.

Obtain a reference to the FlowHandler from the Application. Call its clientWindowTransition () method.
This ensures that navigation that happened as a result of the renderer for the javax.faces.OutcomeTarget
component-family is correctly handled with respect to flows. For example, this enables <h :button> to work correctly
with flows.

Using Application.publishEvent (), publish a PostAddToViewEvent with the created UIViewRoot as the
event source.

In all cases, the implementation must ensure that the restored tree is traversed and the PostRestoreStateEvent is
published for every node in the tree.[P1-end]

At the end of this phase, the viewRoot property of the FacesContext instance for the current request will reflect the
saved configuration of the view generated by the previous Faces Response, or a new view returned by
ViewHandler.createView () for the view identifier.

Apply Request Values

The purpose of the Apply Request Values phase of the request processing lifecycle is to give each component the
opportunity to update its current state from the information included in the current request (parameters, headers, cookies,
and so on). When the information from the current request has been examined to update the component’s current state,
the component is said to have a “local value”.

[P1-start-applyRequestDecode]During the Apply Request Values phase, the JSF implementation must call the
processDecodes () method of the UIViewRoot of the component tree.[P1-end] This will normally cause the
processDecodes () method of each component in the tree to be called recursively, as described in the Javadocs for
the UIComponent .processDecodes () method. [P1-start-partialDecode] The processDecodes () method must
determine if the current request is a “partial request” by calling

FacesContext.getCurrentInstance () .getPartialViewContext () .isPartialRequest (). If

Chapter 2 Request Processing Lifecycle 2-5

2221

2.2.3

FacesContext.getCurrentInstance () .getPartialViewContext () .isPartialRequest () returns
true, perform the sequence of steps as outlined in Section 2.2.2.1 “Apply Request Values Partial Processing”.[P1-end]
Details of the decoding process follow.

During the decoding of request values, some components perform special processing, including:

» Components that implement ActionSource (such as UICommand), which recognize that they were activated, will
queue an ActionEvent. The event will be delivered at the end of Apply Request Values phase if the immediate
property of the component is true, or at the end of Invoke Application phase if it is false.

» Components that implement EditableValueHolder (such as UIInput), and whose immediate property is set
to true, will cause the conversion and validation processing (including the potential to fire ValueChangeEvent
events) that normally happens during Process Validations phase to occur during Apply Request Values phase instead.

As described in Section 2.3 “Common Event Processing”, the processDecodes () method on the UIViewRoot
component at the root of the component tree will have caused any queued events to be broadcast to interested listeners.

At the end of this phase, all EditableValueHolder components in the component tree will have been updated with
new submitted values included in this request (or enough data to reproduce incorrect input will have been stored, if there
were conversion errors). [P1-start-applyRequestConversion]|In addition, conversion and validation will have been
performed on EditableValueHolder components whose immediate property is set to true, as described in the
UIInput Javadocs. Conversions and validations that failed will have caused messages to be enqueued via calls to the
addMessage () method of the FacesContext instance for the current request, and the valid property on the
corresponding component(s) will be set to false. [Pl-end]

If any of the decode () methods that were invoked, or an event listener that processed a queued event, called
responseComplete () on the FacesContext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. [P1-start-applyRequestComplete]If any of the
decode () methods that were invoked, or an event listener that processed a queued event, called renderResponse ()
on the FacesContext instance for the current request, clear the remaining events from the event queue and transfer
control to the Render Response phase of the request processing lifecycle. Otherwise, control must proceed to the Process
Validations phase.[P1-end]

Apply Request Values Partial Processing

[P1-start-apply-partial-processing]Call FacesContext.getPartial ViewContext(). Call PartialViewContext.processPartial()
passing the FacesContext, PhaseID.APPLY REQUEST VALUES as arguments. [P1-end]

Process Validations

As part of the creation of the view for this request, zero or more Validator instances may have been registered for
each component. In addition, component classes themselves may implement validation logic in their validate ()
methods.

[P1-start-validation]During the Process Validations phase of the request processing lifecycle, the JSF implementation
must call the processValidators () method of the UIViewRoot of the tree.[P1-end] This will normally cause the
processValidators () method of each component in the tree to be called recursively, as described in the API
reference for the UIComponent.processValidators () method. [P1-start-partial Validate] The
processValidators () method must determine if the current request is a “partial request” by calling
FacesContext.getCurrentInstance () .getPartialViewContext () .isPartialRequest (). If
FacesContext.getCurrentInstance () .getPartialViewContext () .isPartialRequest () returns
true, perform the sequence of steps as outlined in Section 2.2.3.1 “Partial Validations Partial Processing”.[P1-end] Note
that EditableValueHolder components whose immediate property is set to true will have had their conversion
and validation processing performed during Apply Request Values phase.

2-6 JavaServer Faces Specification « January 2017

2231

224

During the processing of validations, events may have been queued by the components and/or Validators whose
validate () method was invoked. As described in Section 2.3 “Common Event Processing”, the
processValidators () method on the UIViewRoot component at the root of the component tree will have caused
any queued events to be broadcast to interested listeners.

At the end of this phase, all conversions and configured validations will have been completed. Conversions and
Validations that failed will have caused messages to be enqueued via calls to the addMessage () method of the
FacesContext instance for the current request, and the valid property on the corresponding components will have
been set to false.

If any of the validate () methods that were invoked, or an event listener that processed a queued event, called
responseComplete () on the FacesContext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. [P1-start-validationValidate]If any of the
validate () methods that were invoked, or an event listener that processed a queued event, called
renderResponse () on the FacesContext instance for the current request, clear the remaining events from the
event queue and transfer control to the Render Response phase of the request processing lifecycle. Otherwise, control
must proceed to the Update Model Values phase.[P1-end]

Partial Validations Partial Processing

[P1-start-val-partial-processing]Call FacesContext.getPartial ViewContext(). Call Partial ViewContext.processPartial()
passing the FacesContext, PhaseID.PROCESS VALIDATIONS as arguments. [P1-end]

Update Model Values

If this phase of the request processing lifecycle is reached, it is assumed that the incoming request is syntactically and
semantically valid (according to the validations that were performed), that the local value of every component in the
component tree has been updated, and that it is now appropriate to update the application's model data in preparation for
performing any application events that have been enqueued.

[P1-start-updateModel|During the Update Model Values phase, the JSF implementation must call the
processUpdates () method of the UIViewRoot component of the tree.[P1-end] This will normally cause the
processUpdates () method of each component in the tree to be called recursively, as described in the API reference
for the UIComponent .processUpdates () method. [Pl-start-partialUpdate] The processUpdates () method
must determine if the current request is a “partial request” by calling

FacesContext.getCurrentInstance () .getPartialViewContext () .isPartialRequest (). If
FacesContext.getCurrentInstance () .getPartialViewContext () .isPartialRequest () returns
true, perform the sequence of steps as outlined in Section 2.2.4.1 “Update Model Values Partial Processing”. [P1-
end]The actual model update for a particular component is done in the updateModel () method for that component.

During the processing of model updates, events may have been queued by the components whose updateModel ()
method was invoked. As described in Section 2.3 “Common Event Processing”, the processUpdates () method on
the UI'ViewRoot component at the root of the component tree will have caused any queued events to be broadcast to
interested listeners.

At the end of this phase, all appropriate model data objects will have had their values updated to match the local value
of the corresponding component, and the component local values will have been cleared.

If any of the updateModel () methods that were invoked, or an event listener that processed a queued event, called
responseComplete () on the FacesContext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. [P1-start-updateModelComplete]If any of the
updateModel () methods that was invoked, or an event listener that processed a queued event, called
renderResponse () on the FacesContext instance for the current request, clear the remaining events from the
event queue and transfer control to the Render Response phase of the request processing lifecycle. Otherwise, control
must proceed to the Invoke Application phase.[P1-end]

Chapter 2 Request Processing Lifecycle 2-7

2241

2.2.5

2.2.6

Update Model Values Partial Processing

[P1-start-upd-partial-processing]Call FacesContext.getPartial ViewContext(). Call Partial ViewContext.processPartial()
passing the FacesContext, PhaseID.UPDATE MODEL VALUES as arguments. [P1-end]

Invoke Application

If this phase of the request processing lifecycle is reached, it is assumed that all model updates have been completed, and
any remaining event broadcast to the application needs to be performed. [P1-start-invokeApplication]The
implementation must ensure that the processApplication () method of the UIViewRoot instance is called.[P1-
end] The default behavior of this method will be to broadcast any queued events that specify a phase identifier of
PhaseId.INVOKE APPLICATION. If responseComplete ()was called on the FacesContext instance for the
current request, clear the remaining events from the event queue and terminate lifecycle processing of the current
request. If renderResponse () was called on the FacesContext instance for the current request, clear the
remaining events from the event queue.

Advanced applications (or application frameworks) may replace the default ActionListener instance by calling the
setActionListener () method on the Application instance for this application. [P1-start-
invokeApplicationListener|However, the JSF implementation must provide a default ActionListener instance that
behaves as described in Section 7.1.1 “ActionListener Property”.[P1-end]

Render Response

This phase accomplishes two things:
1. Causes the response to be rendered to the client
2. Causes the state of the response to be saved for processing on subsequent requests.

JSF supports a range of approaches that JSF implementations may utilize in creating the response text that corresponds
to the contents of the response view, including:

> Deriving all of the response content directly from the results of the encoding methods (on either the components or
the corresponding renderers) that are called.

» Interleaving the results of component encoding with content that is dynamically generated by application
programming logic.

» Interleaving the results of component encoding with content that is copied from a static “template” resource.

» Interleaving the results of component encoding by embedding calls to the encoding methods into a dynamic resource
(such as representing the components as custom tags in a JSP page).

Because of the number of possible options, the mechanism for implementing the Render Response phase cannot be
specified precisely. [P1-start-renderResponse|However, all JSF implementations of this phase must conform to the
following requirements:

» If it is possible to obtain a ViewDeclarationLanguage instance for the current viewId, from the
ViewHandler, its buildView () method must be called.

» Publish the javax.faces.event.PreRenderViewEvent.

» JSF implementations must provide a default ViewHandler implementation that is capable of handling views written
in JSP as well as views written in the Faces View Declaration Language (VDL). In the case of JSP, the ViewHandler
must perform a RequestDispatcher. forward () call to a web application resource whose context-relative path
is equal to the view identifier of the component tree.

2-8 JavaServer Faces Specification « January 2017

2.2.6.1

» If all of the response content is being derived from the encoding methods of the component or associated
Renderers, the component tree should be walked in the same depth-first manner as was used in earlier phases to
process the component tree, but subject to the additional constraints listed here. Generally this is handled by a call to
ViewHandler.renderView ().

» If the response content is being interleaved from additional sources and the encoding methods, the components may
be selected for rendering in any desired order!.

» During the rendering process, additional components may be added to the component tree based on information
available to the ViewHandler implementation?. However, before adding a new component, the ViewHandler
implementation must first check for the existence of the corresponding component in the component tree. If the
component already exists (perhaps because a previous phase has pre-created one or more components), the existing
component’s properties and attributes must be utilized.

> Under no circumstances should a component be selected for rendering when its parent component, or any of its
ancestors in the component tree, has its rendersChildren property set to true. In such cases, the parent or
ancestor component must render the content of this child component when the parent or ancestor was selected.

» If the isRendered () method of a component returns false, the renderer for that component must not generate
any markup, and none of its facets or children (if any) should be rendered.

» It must be possible for the application to programmatically modify the component tree at any time during the request
processing lifecycle (except during the rendering of the view) and have the system behave as expected. For example,
the following must be permitted. Modification of the view during rendering may lead to undefined results. It must be
possible to allow components added by the templating system (such as JSP) to be removed from the tree before
rendering. It must be possible to programmatically add components to the tree and have them render in the proper
place in the hierarchy. It must be possible to re-order components in the tree before rendering. These manipulations
do require that any components added to the tree have ids that are unique within the scope of the closest parent
NamingContainer component. The value of the rendersChildren property is handled as expected, and may
be either true or false.

» If running on a container that supports Servlet 4.0 or later, after any dynamic component manipulations have been
completed, any resources that have been added to the UIViewRoot, such as scripts, images, or stylesheets, and any
inline images, must be pushed to the client using the Servlet Server Push API. All of the pushes must be started
before any of the HTML of the response is rendered to the client.

» For partial requests, where partial view rendering is required, there must be no content written outside of the view
(outside f:view). Response writing must be disabled. Response writing must be enabled again at the start of
encodeBegin.

When each particular component in the component tree is selected for rendering, calls to its encodeXxx () methods
must be performed in the manner described in Section 3.1.13 “Component Specialization Methods”. For components that
implement ValueHolder (such as Ul Input and UIOutput), data conversion must occur as described in the
UIOutput Javadocs.

Upon completion of rendering, but before state saving the JSF runtime must publish a
javax.faces.event.PostRenderViewEvent. After doing so the JSF runtime must save the completed state
using the methods of the class StateManager. This state information must be made accessible on a subsequent
request, so that the Restore View can access it.[P1-end] For more on StateManager, see Section 7.8.3 “State Saving
Methods.”

Render Response Partial Processing

[P1-start-render-partial-processing| According to UIViewRoot.encodeChildren (),
FacesContext.processPartial (PhaseId.RENDER RESPONSE), will be called if and only if the current
request is an Ajax request. Take these actions in this case.

On the ExternalContext for the request, call setResponseContentType ("text/xml") and
addResponseHeader ("Cache-control", "no-cache"). Call startDocument () on the
PartialResponseWriter.

1. Typically, component selection will be driven by the occurrence of special markup (such as the existence of a JSP custom tag) in the template text associated
with the component tree.

2. For example, this technique is used when custom tags in JSP pages are utilized as the rendering technology, as described in Chapter 9 “Integration with JSP.

Chapter 2 Request Processing Lifecycle 2-9

Call writePreamble (“<?xml version=’1.0’ encoding='currentEncoding’?>\n”) on the
PartialResponseWriter, where encoding is the return from the getCharacterEncoding () on the
PartialResponseWriter, or UTF-§ if that method returns null.

If isResetValues () returns true, call getRenderIds () and pass the result to
UIViewRoot.resetValues ().

If isRenderAll () returns true and the view root is not an instance of NamingContainer, call

startUpdate (PartialResponseWriter .RENDER ALL MARKER) on the PartialResponseWriter. For
each child of the UIViewRoot, call encodeAll (). Call endUpdate () on the PartialResponselWriter.
Render the state using the algorithm described below in Section “Partial State Rendering”, call endDocument () on
the PartialResponseWriter and return. If isRenderAll () returns true and this UIViewRoot is a
NamingContainer, treat this as a case where isRenderAl1 () returned false, but use the UIViewRoot itself as
the one and only component from which the tree visit must start.

If isRenderAll () returns false, if there are ids to render, visit the subset of components in the tree to be rendered
in similar fashion as for other phases, but for each UIComponent in the traversal, call startUpdate (id) on the
PartialResponseWriter, where id is the client id of the component. Call encodeAll () on the component, and
then endUpdate () on the PartialResponseWriter. If there are no ids to render, this step is un-necessary. After
the subset of components (if any) have been rendered, Render the state using the algorithm described below in Section
“Partial State Rendering”, call endDocument () on the PartialResponseWriter and return.

Partial State Rendering

This section describes the requirements for rendering the <update> elements pertaining to view state and window id in
the case of partial response rendering.

If the view root is marked transient, take no action and return.

Obtain a unique id for the view state, as described in the JavaDocs for the constant field
ResponseStateManager.VIEW STATE PARAM. Pass this id to a call to startUpdate () on the
PartialResponseWriter. Obtain the view state to render by calling getViewState () on the application’s
StateManager. Write the state by calling write () on the PartialResponseWriter, passing the state as the
argument. Call endUpdate () on the PartialResponseWriter.

If getClientWindow () on the ExternalContext, returns non-null, obtain an id for the <update> element for
the window id as described in the JavaDocs for the constant ResponseStateManager .WINDOW ID PARAM. Pass
this id to a call to startUpdate () onthe PartialResponseWriter. Call write () on that same writer, passing
the result of calling getId () on the ClientWindow. Call endUpdate () on the PartialResponseWriter.

[P1-end]

2.3

2-10

Common Event Processing

For a complete description of the event processing model for JavaServer Faces components, see Section 3.4 “Event and
Listener Model”.

During several phases of the request processing lifecycle, as described in Section 2.2 “Standard Request Processing
Lifecycle Phases”, the possibility exists for events to be queued (via a call to the queueEvent () method on the source
UIComponent instance, or a call to the queue () method on the FacesEvent instance), which must now be
broadcast to interested event listeners. The broadcast is performed as a side effect of calling the appropriate lifecycle
management method (processDecodes (), processValidators (), processUpdates (), or
processApplication ()) on the UIViewRoot instance at the root of the current component tree.

JavaServer Faces Specification « January 2017

[P1-start-eventBroadcast]For each queued event, the broadcast () method of the source UIComponent must be
called to broadcast the event to all event listeners who have registered an interest, on this source component for events
of the specified type, after which the event is removed from the event queue.[P1-end] See the API reference for the
UIComponent.broadcast () method for the detailed functional requirements.

It is also possible for event listeners to cause additional events to be enqueued for processing during the current phase of
the request processing lifecycle. [P1-start-eventOrder|Such events must be broadcast in the order they were enqueued,
after all originally queued events have been broadcast, before the lifecycle management method returns.[P1-end]

2.4

24.1

24.1.1

Common Application Activities

The following subsections describe common activities that may be undertaken by an application that is using JSF to
process an incoming request and/or create an outgoing response. Their use is described in Section 2.1 “Request
Processing Lifecycle Scenarios”, for each request processing lifecycle scenario in which the activity is relevant.

Acquire Faces Object References

This phase is only required when the request being processed was not submitted from a previous response, and therefore
did not initiate the Faces Request Generates Faces Response lifecycle. In order to generate a Faces Response, the
application must first acquire references to several objects provided by the JSF implementation, as described below.

Acquire and Configure Lifecycle Reference

[P1-start-lifeReference]As described in Section 12.1 “Lifecycle”, the JSF implementation must provide an instance of
javax.faces.lifecycle.Lifecycle that may be utilized to manage the remainder of the request processing
lifecycle.[P1-end] An application may acquire a reference to this instance in a portable manner, as follows:

LifecycleFactory lFactory = (LifecycleFactory)
FactoryFinder.getFactory (FactoryFinder.LIFECYCLE FACTORY) ;
Lifecycle lifecycle =
lFactory.getLifecycle (LifecycleFactory.DEFAULT LIFECYCLE) ;

It is also legal to specify a different lifecycle identifier as a parameter to the getLifecycle () method, as long as this
identifier is recognized and supported by the JSF implementation you are using. However, using a non-default lifecycle
identifier will generally not be portable to any other JSF implementation.

Chapter 2 Request Processing Lifecycle 2-11

24.1.2

24.2

2421

Acquire and Configure FacesContext Reference

[P1-start-contextReference]As described in Section 6.1 “FacesContext”, the JSF implementation must provide an
instance of javax.faces.context.FacesContext to contain all of the per-request state information for a Faces
Request or a Faces Response. An application that is processing a Non-Faces Request, but wants to create a Faces
Response, must acquire a reference to a FacesContext instance as follows

FacesContextFactory fcFactory = (FacesContextFactory)
FactoryFinder.getFactory (FactoryFinder.FACES CONTEXT FACTORY) ;
FacesContext facesContext =
fcFactory.getFacesContext (context, request, response,
lifecycle);

where the context, request, and response objects represent the corresponding instances for the application
environment.[P1-end] For example, in a servlet-based application, these would be the ServletContext,
HttpServletRequest, and HttpServletResponse instances for the current request.

Create And Configure A New View

When a Faces response is being intially created, or when the application decides it wants to create and configure a new
view that will ultimately be rendered, it may follow the steps described below in order to set up the view that will be
used. You must start with a reference to a FacesContext instance for the current request.

Create A New View

Views are represented by a data structure rooted in an instance of javax.faces.component.UIViewRoot, and
identified by a view identifier whose meaning depends on the ViewHandler implementation to be used during the
Render Response phase of the request processing lifecycle3. The ViewHandler provides a factory method that may be
utilized to construct new component trees, as follows:

String viewId = ...identifier of the desired Tree...;
ViewHandler viewHandler = application.getViewHandler () ;
UIViewRoot view = viewHandler.createView (facesContext, viewId);

[P1-start-create ViewRoot]The UIViewRoot instance returned by the createView () method must minimally contain
a single UIViewRoot provided by the JSF implementation, which must encapsulate any implementation-specific
component management that is required.[P1-end] Optionally, a JSF implementation’s ViewHandler may support the
automatic population of the returned UIViewRoot with additional components, perhaps based on some external
metadata description.

[P1-start-createView|The caller of ViewHandler.createView () must cause the FacesContext to be populated
with the new UIViewRoot . Applications must make sure that it is safe to discard any state saved in the view rooted at
the UIViewRoot currently stored in the FacesContext.[P1-end] If Facelets is the page definition language,
FacesContext.setViewRoot () must be called before returning from ViewHandler.createView () . Refer to
Section 7.6.2 “Default ViewHandler Implementation” for more ViewHandler details.

3. The default ViewHandler implementation performs a RequestDispatcher. forward call to the web application resource that will actually perform the
rendering, so it expects the tree identifier to be the context-relative path (starting with a / character) of the web application resource

2-12 JavaServer Faces Specification * January 2017

2422

2423

2424

Configure the Desired RenderKit

[P1-start-defaultRenderkit]The UIViewRoot instance provided by the ViewHandler, as described in the previous
subsection, must automatically be configured to utilize the default javax.faces.render.RenderKit
implementation provided by the JSF implementation, as described in Section 8.1 “RenderKit”. This RenderKit must
support the standard components and Renderers described later in this specification, to maximize the portability of
your application.[P1-end]

However, a different RenderKit instance provided by your JSF implementation (or as an add-on library) may be
utilized instead, if desired. A reference to this RenderKit instance can be obtained from the standard
RenderKitFactory, and then assigned to the UIViewRoot instance created previously, as follows:

String renderKitId = ... identifier of desired RenderKit ...;

RenderKitFactory rkFactory = (RenderKitFactory)
FactoryFinder.getFactory (FactoryFinder .RENDER KIT FACTORY) ;

RenderKit renderKit = rkFactory.getRenderKit (renderKitId,
facesContext) ;

view.setRenderKitId (renderKitId) ;

As described in Chapter 8, changing the RenderKit being used changes the set of Renderers that will actually
perform decoding and encoding activities. Because the components themselves store only a rendererType property (a
logical identifier of a particular Renderer), it is thus very easy to switch between RenderKits, as long as they
support renderers with the same renderer types.

[P1-start-calcRenderkitld] The default ViewHandler must call calculateRenderKitId () on itself and set the
result into the UIViewRoot’s renderKitId property.[P1-end] This allows applications that use alternative
RenderKits to dynamically switch on a per-view basis.

Configure The View’s Components

At any time, the application can add new components to the view, remove them, or modify the attributes and properties
of existing components. For example, a new FooComponent (an implementation of UIComponent) can be added as a
child to the root UIViewRoot in the component tree as follows:

FooComponent component = ...create a FooComponent instance...;
facesContext.getViewRoot () .getChildren () .add (component) ;

Store the new View in the FacesContext

[P1-start-setViewRoot]Once the view has been created and configured, the FacesContext instance for this request
must be made aware of it by calling setViewRoot ().[Pl-end]

2.5

Concepts that impact several lifecycle phases

This section is intended to give the reader a “big picture” perspective on several complex concepts that impact several
request processing lifecycle phases.

Chapter 2 Request Processing Lifecycle 2-13

2.5.1

2.5.1.1

2.5.1.2

2.5.1.3

2.5.1.4

2.5.2

Value Handling

At a fundamental level, JavaServer Faces is a way to get values from the user, into your model tier for processing. The
process by which values flow from the user to the model has been documented elsewhere in this spec, but a brief holistic
survey comes in handy. The following description assumes the JSP/HTTP case, and that all components have Renderers.

Apply Request Values Phase

The user presses a button that causes a form submit to occur. This causes the state of the form to be sent as name=
value pairs in the POST data of the HTTP request. The JSF request processing lifecycle is entered, and eventually we
come to the Apply Request Values Phase. In this phase, the decode () method for each Renderer for each
UIComponent in the view is called. The Renderer takes the value from the request and passes it to the
setSubmittedValue () method of the component, which is, of course, an instance of EditableValueHolder. If
the component has the "immediate" property set to true, we execute validation immediately after decoding. See
below for what happens when we execute validation.

Process Validators Phase

processValidators () is called on the root of the view. For each EditableValueHolder in the view, If the
“immediate” property is not set, we execute validation for each UIInput in the view. Otherwise, validation has
already occurred and this phase is a no-op.

Executing Validation

Please see the javadocs for UIInput.validate () for more details, but basically, this method gets the submitted
value from the component (set during Apply Request Values), gets the Renderer for the component and calls its
getConvertedValue (), passing the submitted value. If a conversion error occurs, it is dealt with as described in the
javadocs for that method. Otherwise, all validators attached to the component are asked to validate the converted value.
If any validation errors occur, they are dealt with as described in the javadocs for Validator.validate (). The
converted value is pushed into the component's setValue () method, and a ValueChangeEvent is fired if the value
has changed.

Update Model Values Phase

For each UTInput component in the view, its updateModel () method is called. This method only takes action if a
local value was set when validation executed and if the page author configured this component to push its value to the
model tier. This phase simply causes the converted local value of the UIInput component to be pushed to the model in
the way specified by the page author. Any errors that occur as a result of the attempt to push the value to the model tier
are dealt with as described in the javadocs for UIInput.updateModel ().

Localization and Internationalization (L10N/I18N)

JavaServer Faces is fully internationalized. The I18N capability in JavaServer Faces builds on the I18N concepts offered
in the Servlet, JSP and JSTL specifications. I18N happens at several points in the request processing lifecycle, but it is
easiest to explain what goes on by breaking the task down by function.

2-14 JavaServer Faces Specification * January 2017

2521

2522

Determining the active Locale

JSF has the concept of an active Locale which is used to look up all localized resources. Converters must use this
Locale when performing their conversion. This Locale is stored as the value of the 1ocale JavaBeans property on
the UIViewRoot of the current FacesContext. The application developer can tell JSF what locales the application
supports in the applications’ WEB-INF/faces-config.xml file. For example:

<faces-config>
<application>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>de</supported-locale>
<supported-locale>fr</supported-locale>
<supported-locale>es</supported-locale>
</locale-config>
</application>

This application’s default locale is en, but it also supports de, fr, and es locales. These elements cause the
Application instance to be populated with Locale data. Please see the javadocs for details.

The UIViewRoot’s Locale is determined and set by the ViewHandler during the execution of the
ViewHandler’s createView () method. [P1-start-locale]This method must cause the active Locale to be
determined by looking at the user’s preferences combined with the application’s stated supported locales.[P1-end] Please
see the javadocs for details.

The application can call UIViewRoot.setLocale () directly, but it is also possible for the page author to override
the UIViewRoot’s locale by using the 1ocale attribute on the <f :view> tag. [Pl-start-localeValue]The value of this
attribute must be specified as language [{-| }country[{-| }variant]] without the colons, for example

"ja_ JP_SJIS". The separators between the segments must be '=' or ' ".[Pl-end]

In all cases where JSP is utilized, the active Locale is set under “request scope” into the JSTL class
javax.servlet.jsp.jstl.core.Config, under the key Config.FMT LOCALE.

To facilitate BCP 47 support, the Locale parsing mentioned above is done only if the JDK Locale.languageForTag
method does not return a Locale with a language in it. The additional format of the Locale string is as specified by that
method.

Determining the Character Encoding
The request and response character encoding are set and interpreted as follows.

On an initial request to a Faces webapp, the request character encoding is left unmodified, relying on the underlying
request object (e.g., the servlet or portlet request) to parse request parameter correctly.

[P1-start-setLocale] At the beginning of the render-response phase, the ViewHandler must ensure that the response Locale
is set to be that of the UIViewRoot, for example by calling ServletResponse.setLocale () when running in the
servlet environment.[P1-end] Setting the response Locale may affect the response character encoding, see the Servlet and
Portlet specifications for details.

[P1-start-encoding]At the end of the render-response phase, the ViewHandler must store the response character encoding
used by the underlying response object (e.g., the servlet or portlet response) in the session (if and only if a session
already exists) under a well known, implementation-dependent key.

On a subsequent postback, before any of the ExternalContext methods for accessing request parameters are invoked, the
ViewHandler must examine the Content-Type header to read the charset attribute and use its value to set it as the request
encoding for the underlying request object. If the Content-Type header doesn't contain a charset attribute, the encoding
previously stored in the session (if and only if a session already exists), must be used to set the encoding for the
underlying request object. If no character encoding is found, the request encoding must be left unmodified.[P1-end]

Chapter 2 Request Processing Lifecycle 2-15

2523

2524

The above algorithm allows an application to use the mechanisms of the underlying technologies to adjust both the
request and response encoding in an application-specific manner, for instance using the page directive with a fixed
character encoding defined in the contentType attribute in a JSP page, see the Servlet, Portlet and JSP specifications for
details. Note, though, that the character encoding rules prior to Servlet 2.4 and JSP 2.0 are imprecise and special care
must be taken for portability between containers.

Localized Text

There is no direct support for this in the API, but the JSP layer provides a convenience tag that converts a
ResourceBundle into a java.util.Map and stores it in the scoped namespace so all may get to it. This section
describes how resources displayed to the end user may be localized. This includes images, labels, button text, tooltips, alt
text, etc.

Since most JSF components allow pulling their display value from the model tier, it is easy to do the localization at the
model tier level. As a convenience, JSF provides the <f:loadBundle> tag, which takes a ResourceBundle and
loads it into a Map, which is then stored in the scoped namespace in request scope, thus making its messages available
using the same mechanism for accessing data in the model tier. For example:

<f:loadBundle basename="com.foo.industryMessages.chemical”
var="messages” />
<h:outputText value="#{messages.benzene}l” />
This must cause the ResourceBundle named com.foo.industryMessages.chemical to be loaded as a Map

into the request scope under the key messages. Localized content can then be pulled out of it using the normal value
expression syntax.

Localized Application Messages

This section describes how JSF handles localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. The JSF class
javax.faces.application.FacesMessage is provided to encapsulate summary, detail, and severity information
for a message. [P1-start-bundle]A JSF implementation must provide a javax.faces.Messages
ResourceBundle containing all of the necessary keys for the standard messages. The required keys (and a non-
normative indication of the intended message text) are as follows:

» javax.faces.component.UlInput. CONVERSION -- {0}: Conversion error occurred

» javax.faces.component.UlInput. REQUIRED -- {0}: Validation Error: Value is required

» javax.faces.component.Ullnput. UPDATE -- {0}: An error occurred when processing your submitted information
» javax.faces.component.UISelectOne.INVALID -- {0}: Validation Error: Value is not valid

» javax.faces.component.UlSelectMany.INVALID -- {0}: Validation Error: Value is not valid

» javax.faces.converter.BigDecimalConverter DECIMAL={2}: "{0}" must be a signed decimal number.

» javax.faces.converter.BigDecimalConverter. DECIMAL detail={2}: "{0}" must be a signed decimal number
consisting of zero or more digits, that may be followed by a decimal point and fraction. Example: {1}

» javax.faces.converter.BigintegerConverter. BIGINTEGER={2}: "{0}" must be a number consisting of one or more
digits.

» javax.faces.converter.BigIntegerConverter. BIGINTEGER detail={2}: "{0}" must be a number consisting of one or
more digits. Example: {1}

» javax.faces.converter.BooleanConverter BOOLEAN={1}: "{0}" must be 'true' or 'false'.

» javax.faces.converter.BooleanConverter BOOLEAN detail={1}: "{0}" must be 'true' or 'false'. Any value other than
'true' will evaluate to 'false'.

2-16 JavaServer Faces Specification * January 2017

javax.faces.converter.ByteConverter. BY TE={2}: "{0}" must be a number between -128 and 127.
javax.faces.converter.ByteConverter. BYTE detail={2}: "{0}" must be a number between -128 and 127. Example:
{1}

javax.faces.converter.CharacterConverter. CHARACTER={1}: "{0}" must be a valid character.
javax.faces.converter.CharacterConverte. CHARACTER detail={1}: "{0}" must be a valid ASCII character.
javax.faces.converter.DateTimeConverter. DATE={2}: "{0}" could not be understood as a date.
javax.faces.converter.DateTimeConverter. DATE detail={2}: "{0}" could not be understood as a date. Example: {1}
javax.faces.converter.DateTimeConverter. TIME={2}: "{0}" could not be understood as a time.
javax.faces.converter.DateTimeConverter. TIME_detail={2}: "{0}" could not be understood as a time. Example: {1}
javax.faces.converter.DateTimeConverter. DATETIME={2}: "{0}" could not be understood as a date and time.

javax.faces.converter.DateTimeConverter. DATETIME _detail={2}: "{0}" could not be understood as a date and time.
Example: {1}

javax.faces.converter.DateTimeConverter. PATTERN TYPE={1}: A 'pattern' or 'type' attribute must be specified to
convert the value "{0}".

javax.faces.converter.DoubleConverter. DOUBLE={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.DoubleConverter. DOUBLE _detail={2}: "{0}" must be a number between 4.9E-324 and
1.7976931348623157E308 Example: {1}

javax.faces.converter. EnumConverter. ENUM={2}: "{0}" must be convertible to an enum.

javax.faces.converter. EnumConverter. ENUM detail={2}: "{0}" must be convertible to an enum from the enum that
contains the constant "{1}".

javax.faces.converter. EnumConverter ENUM_NO_CLASS={1}: "{0}" must be convertible to an enum from the
enum, but no enum class provided.

javax.faces.converter. EnumConverter. ENUM_NO_CLASS detail={1}: "{0}" must be convertible to an enum from
the enum, but no enum class provided.

javax.faces.converter.FloatConverter. FLOAT={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.FloatConverter. FLOAT detail={2}: "{0}" must be a number between 1.4E-45 and
3.4028235E38 Example: {1}

javax.faces.converter.IntegerConverter. INTEGER={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.IntegerConverter. INTEGER _detail={2}: "{0}" must be a number between -2147483648 and
2147483647 Example: {1}

javax.faces.converter.LongConverter. LONG={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.LongConverter. LONG_detail={2}: "{0}" must be a number between -9223372036854775808 to
9223372036854775807 Example: {1}

javax.faces.converter.NumberConverter. CURRENCY={2}: "{0}" could not be understood as a currency value.

javax.faces.converter.NumberConverter. CURRENCY _detail={2}: "{0}" could not be understood as a currency value.
Example: {1}

javax.faces.converter.NumberConverter PERCENT={2}: "{0}" could not be understood as a percentage.

javax.faces.converter.NumberConverter. PERCENT _detail={2}: "{0}" could not be understood as a percentage.
Example: {1}

javax.faces.converter.NumberConverter NUMBER={2}: "{0}" is not a number.
javax.faces.converter.NumberConverter NUMBER _detail={2}: "{0}" is not a number. Example: {1}
javax.faces.converter.NumberConverter, PATTERN={2}: "{0}" is not a number pattern.
javax.faces.converter.NumberConverter, PATTERN detail={2}: "{0}" is not a number pattern. Example: {1}
javax.faces.converter.ShortConverter. SHORT={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.ShortConverter. SHORT detail={2}: "{0}" must be a number between -32768 and 32767
Example: {1}

Chapter 2 Request Processing Lifecycle 2-17

2-18

» javax.faces.converter. STRING={1}: Could not convert "{0}" to a string.
» javax.faces.validator.BeanValidator MESSAGE -- {0}

» javax.faces.validator.DoubleRangeValidator MAXIMUM -- {1}: Validation Error: Value is greater than allowable
maximum of “’{0}”

» javax.faces.validator.DoubleRangeValidator. MINIMUM -- {1}: Validation Error: Value is less than allowable
minimum of “’{0}”

» javax.faces.validator.DoubleRangeValidator NOT IN RANGE -- {2}: Validation Error: Specified attribute is not
between the expected values of {0} and {1}.

» javax.faces.validator.DoubleRangeValidator. TYPE -- {0}: Validation Error: Value is not of the correct type

» javax.faces.validator.LengthValidator MAXIMUM -- {1}: Validation Error: Length is greater than allowable
maximum of “’{0}”

» javax.faces.validator.LengthValidator MINIMUM -- {1}: Validation Error: Length is less than allowable minimum of
[{0} 2

» javax.faces.validator.LongRangeValidator MAXIMUM -- {1}: Validation Error: Value is greater than allowable
maximum of “’{0}”

» javax.faces.validator.LongRangeValidator MINIMUM -- {1}: Validation Error Value is less than allowable minimum
of [{0} 2

» javax.faces.validator.LongRangeValidator NOT IN RANGE={2}: Validation Error: Specified attribute is not between
the expected values of {0} and {1}.

» javax.faces.validator.LongRangeValidator. TYPE -- {0}: Validation Error: Value is not of the correct type

The following message keys are deprecated:

» javax.faces.validator.NOT _IN_RANGE -- Specified attribute is not between the expected values of {0} and {1}[P1-
end]

A JSF application may provide its own messages, or overrides to the standard messages by supplying a <message-
bundle> element to in the application configuration resources. Since the ResourceBundle provided in the Java
platform has no notion of summary or detail, JSF adopts the policy that ResourceBundle key for the message looks
up the message summary. The detail is stored under the same key as the summary, with detail appended. [P1-start-
bundleKey]|These ResourceBundle keys must be used to look up the necessary values to create a localized
FacesMessage instance. Note that the value of the summary and detail keys in the ResourceBundle may contain
parameter substitution tokens, which must be substituted with the appropriate values using
java.text.MessageFormat.[Pl-end] Replace the last parameter substitution token shown in the messages above
with the input component’s 1abel attribute. For example, {1} for “DoubleRangeValidator.MAXIMUM”, {2}
for “ShortConverter.SHORT”. The label attribute is a generic attribute. Please see Section 3.1.11 “Generic
Attributes” and Section 8.6 “Standard HTML RenderKit Implementation” for more information on these attributes. If the
input component’s label attribute is not specified, use the component’s client identifier.

These messages can be displayed in the page using the UIMessage and UIMessages components and their
corresponding tags, <h:message> and <h:messages>.

[P1-start-facesMessage]The following algorithm must be used to create a FacesMessage instance given a message
key.

» Call getMessageBundle () on the Application instance for this web application, to determine if the
application has defined a resource bundle name. If so, load that ResourceBundle and look for the message there.

» If not there, look in the javax.faces.Messages resource bundle.

» In either case, if a message is found, use the above conventions to create a FacesMessage instance.[P1-end]

JavaServer Faces Specification « January 2017

2.5.3

2531

State Management

JavaServer Faces introduces a powerful and flexible system for saving and restoring the state of the view between
requests to the server. It is useful to describe state management from several viewpoints. For the page author, state
management happens transparently. For the app assembler, state management can be configured to save the state in the
client or on the server by setting the ServletContext InitParameter named javax.faces.STATE SAVING METHOD to
either client or server. The value of this parameter directs the state management decisions made by the
implementation.

State Management Considerations for the Custom Component Author

Since the component developer cannot know what the state saving method will be at runtime, they must be aware of state
management. As shown in Section FIGURE 4-1 “The javax.faces.component package”, all JSF components implement
the StateHolder interface. As a consequence the standard components provide implementations of
PartialStateHolder to suit their needs. [P1-start-componentStateHolder]A custom component that extends
UIComponent directly, and does not extend any of the standard components, must implement
PartialStateHolder (or its older super-interface, StateHolder), manually. The helper class StateHelper
exists to simplify this process for the custom component author. [P1-end]Please see Section 3.2.5 “PartialStateHolder”
or Section 3.2.4 “StateHolder” for details.

A custom component that does extend from one of the standard components and maintains its own state, in addition to
the state maintained by the superclass must take special care to implement StateHolder or PartialStateHolder
correctly. [P1-start-saveState|Notably, calls to saveState () must not alter the state in any way.[P1-end] The subclass
is responsible for saving and restoring the state of the superclass. Consider this example. My custom component
represents a “slider” ui widget. As such, it needs to keep track of the maximum value, minimum value, and current
values as part of its state.

Chapter 2 Request Processing Lifecycle 2-19

2532

2-20

public class Slider extends UISelectOne {

//

protected Integer min = null;
protected Integer max = null;

protected Integer cur = null;

details omitted

public Object saveState (FacesContext context) {

Object values[] = new Object[4];

values[0] = super.saveState (context);
values[1l] = min;
values[2] = max;
values[3] = cur;

public void restoreState (FacesContext context, Object state) {

}

Object values[] = (Object {}) state; // guaranteed to succeed

super.restoreState (context, values|[0]);

min = (Integer) values[l];
max = (Integer) values[2];
cur = (Integer) values[3];

Note that we call super.saveState () and super.restoreState () as appropriate. This is absolutely vital!
Failing to do this will prevent the component from working.

State Management Considerations for the JSF Implementor

The intent of the state management facility is to make life easier for the page author, app assembler, and component
author. However, the complexity has to live somewhere, and the JSF implementor is the lucky role. Here is an overview
of the key players. Please see the javadocs for each individual class for more information.

Key Players in State Management

?

StateHelper the helper class that defines a Map-like contract that makes it easier for components to implement
PartialStateHolder.

ViewHandler the entry point to the state management system. Uses a helper class, StateManager, to do the
actual work. In the JSP case, delegates to the tag handler for the <f:view> tag for some functionality.

StateManager abstraction for the hard work of state saving. Uses a helper class, ResponseStateManager, for
the rendering technology specific decisions.

ResponseStateManager abstraction for rendering technology specific state management decisions.

UIComponent directs process of saving and restoring individual component state.

JavaServer Faces Specification « January 2017

254

2.5.5

Resource Handling

This section only applies to pages written using Facelets for JSF 2 and later. Section 2.6 “Resource Handling” is the
starting point for the normative specification for Resource Handling. This section gives a non-normative overview of the
feature. The following steps walk through the points in the lifecycle where this feature is encountered. Consider a Faces
web application that contains resources that have been packaged into the application as specified in Section 2.6.1
“Packaging Resources”. Assume each page in the application includes references to resources, specifically scripts and
stylesheets. The first diagram in this chapter is helpful in understanding this example.

Consider an initial request to the application.

» The ViewHandler calls ViewDeclarationLanguage.buildView (). This ultimately causes the
processEvent () method for the javax.faces.resource.Script and
javax.faces.resource.Stylesheet renderers (which implement ComponentSystemEventListener)
to be called after each component that declares them as their renderer is added to the view. This method is specified
to take actions that cause the resource to be rendered at the correct part in the page based on user-specified or
application invariant rules. Here’s how it works.

Every UIComponent instance in a view is created with a call to some variant of
Application.createComponent (). The specification for this method now includes some annotation
processing requirements. If the component or its renderer has an @ListenerFor or @ListenersFor annotation,
and the Script and Stylesheet renderers must, the component or its renderer are added as a component scoped
listener for the appropriate event. In the case of Script and Stylesheet renderers, they must listen for the
PostAddToViewEvent.

When the processEvent () method is called on a Script or Stylesheet renderer, the renderer takes the
specified action to move the component to the proper point in the tree based on what kind of resource it is, and on
what hints the page author has declared on the component in the view.

» The ViewHandler calls ViewDeclarationLanguage.renderView (). The view is traversed as normal and
because the components with Script and Stylesheet renderers have already been reparented to the proper place
in the view, the normal renderering causes the resource to be encoded as described in Section 2.6.2 “Rendering
Resources”.

The browser then parses the completely rendered page and proceeds to issue subsequent requests for the resources
included in the page.

Now consider a request from the browser for one of those resources included in the page.

» The request comes back to the Faces server. The FacesServlet is specified to call
ResourceHandler.isResourceRequest () as shown in the diagram in Section 2.1.2 “Faces Request
Generates Faces Response”. In this case, the method returns true. The FacesServlet is specified to call
ResourceHandler.handleResourceRequest () to serve up the bytes of the resource.

View Parameters

This section only applies to pages written using Facelets for JSF 2 and later. The normative specification for this feature
is spread out across several places, including the View Declaration Language Documentation for the <f:metadata>
element, the javadocs for the UIViewParameter, ViewHandler, and ViewDeclarationLanguage classes, and
the spec language requirements for the default NavigationHandler and the Request Processing Lifecycle. This leads
to a very diffuse field of specification requirements. To aid in understanding the feature, this section provides a non-
normative overview of the feature. The following steps walk through the points in the lifecycle where this feature is
encountered. Consider a web application that uses this feature exclusively on every page. Therefore every page has the
following features in common.

» Every page has an <f :metadata> tag, with at least one <f:viewParameter> element within it.
2 Every page has at least one <h:1ink> or <h:button> with the appropriate parameters nested within it.

> No other kind of navigation components are used in the application.

Consider an initial request to the application.

Chapter 2 Request Processing Lifecycle 2-21

2.5.6

2.5.7

» As specified in section Section 2.2.1 “Restore View”, the restore view phase of the request processing lifecycle
detects that this is an initial request and tries to obtain the ViewDeclarationLanguage instance from the
ViewHandler for this viewId. Because every page in the app is written in Facelets for JSF 2.0, there is a
ViewDeclarationLanguage instance. Restore view phase calls
ViewDeclarationLanguage.getViewMetadata (). Because every view in this particular app does have
<f:metadata> on every page, this method returns a ViewMetadata instance. Restore view phase calls
MetaData.createMetadataView (). This method creates a UIViewRoot containing only children declared in
the <f :metadata> element. Restore view phase calls ViewMetadata.getViewParameters (). Because
every <f:metadata> in the app has at least one <f: viewParameter> element within it, this method returns a
non empty Collection<UIViewParameter>. Restore view phase uses this fact to decide that the lifecycle must
not skip straight to render response, as is the normal action taken on initial requests.

» The remaining phases of the request processing lifecycle execute: apply request values, process validations, update
model values, invoke application, and finally render response. Because the view only contains UIViewParameter
children, only these children are traversed during the lifecycle, but because this is an initial request, with no query
parameters, none of these compnents take any action during the lifecycle.

» Because the pages exclusively use <h:1ink> and <h:button> for their navigation, the renderers for these
components are called during the rendering of the page. As specified in the renderkit docs for the renderers for those
components, markup is rendered that causes the browser to issue a GET request with query parameters.

Consider when the user clicks on a link in the application. The browser issues a GET request with query parameters

» Restore view phase takes the same action as in the previously explained request. Because this is a GET request, no
state is restored from the previous request.

» Because this is a request with query parameters, the UIViewParameter children do take action when they are
traversed during the normal lifecycle, reading values during the apply request values phase, doing conversion and
processing validators attached to the <f:viewParam> elements, if any, and updating models during the update
model values phase. Because there are only <h:1ink> and <h:button> navigation elements in the page, no action
action will happen during the invoke application phase. The response is re-rendered as normal. In such an application,
the only navigation to a new page happens by virtue of the browser issuing a GET request to a different viewld.

Bookmarkability

Prior to JSF 2, every client server interaction was an HTTP POST. While this works fine in many situations, it does not
work well when it comes to bookmarking pages in a web application. Version 2 of the specification introduces
bookmarking capability with the use of two new Standard HTML RenderKit additions.

Provided is a new component (UIlOQutcomeTarget) that provides properties that are used to produce a hyperlink at render
time. The component can appear in the form of a button or a link. This feature introduces a concept known as
“preemptive navigation”, which means the target URL is determined at Render Response time - before the user has
activated the component. This feature allows the user to leverage the navigation model while also providing the ability to
generate bookmarkable non-faces requests.

JSR 303 Bean Validation

Version 2 of the specification introduces support for JSR 303 Bean Validation. [p1-beanValidationRequired]A JSF
implentation must support JSR 303 Bean Validation if the environment in which the JSF runtime is included requires
JSR 303 Bean Validation. Currently the only such environment is when JSF is included in a Java EE 6 runtime.[pl-end]

A detailed description of the usage of Bean Validation with JSF is beyond the scope of this section, but this section will
provide a brief overview of the feature, touching on the points of interest to a spec implementor. Consider a simple web
application that has one page, written in Facelets for JSF 2, that has a several text fields inside of a form. This

2-22 JavaServer Faces Specification * January 2017

2.5.8

2.5.9

application is running in a JSF runtime in an environment that does require JSR 303 Bean Validation, and therefore this
feature is available. Assume that every text field is bound to a managed bean property that has at least one Bean
Validation constraint annotation attached to it.

During the render response phase that always precedes a postback, due to the specification requirements in Section 3.5.3
“Validation Registration”, every UIInput in this application has an instance of Validator with id
javax.faces.Bean attached to it.

During the process validations phase, due to the specification for the validate () method of this Validator, Bean
Validation is invoked automatically, for the user specified validation constraints, whenever such components are
normally validated. The javax.faces.Bean standard validator also ensures that every ConstraintViolation
that resulted in attempting to validate the model data is wrapped in a FacesMessage and added to the
FacesContext as normal with every other kind of validator.

See also Section 3.5.6 “Bean Validation Integration”.

Ajax

JSF and Ajax have been working well together for a number of years. this has led to the sprouting of many JSF Ajax
frameworks. Although many of these frameworks may appear different, they all contribute to a dynamic request response
experience. The variations in the way these frameworks provide that experience causes component compatibility
problems when using components from different libraries together in the same web application.

JSF 2 introduces Ajax into the specification, and it builds upon important concepts from a variety of existing JSF Ajax
frameworks. The specification introduces a JavaScript library for performing basic Ajax operations. The library helps
define a standard way of sending an Ajax request, and processing an Ajax response, since these are problem areas for
component compatability. The specification provides two ways of adding Ajax to JSF web applications. Page authors
may use the JavaScript library directly in their pages by attaching the Ajax request call to a JSF component via a
JavaScript event (such as onclick). They may also take a more declarative aproach and use a core Facelets tag (<f:ajax/>)
that they can nest within JSF components to “Ajaxify” them. It is also possible to “Ajaxify” regions of a page by
“wrapping” the tag around component groups.

The server side aspects of JSF Ajax frameworks work with the standard JSF lifecycle. In addition to providing a standard
page authoring experience, the specification also standardizes the server side processing of Ajax requests. Selected
components in a JSF view can be priocessed (known as partial processing) and selected components can be rendered to
the client (known as partial rendering).

Component Behaviors

The JSF 2 specification introduces a new type of attached object known as component behaviors. Component behaviors
play a similar role to converters and validators in that they are attached to a component instance in order to enhance the
component with additional functionality not defined by the component itself. While converters and validators are
currently limited to the server-side request processing lifecycle, component behaviors have impact that extends to the
client, within the scope of a particular instance component in a view. In particular, the ClientBehavior interface
defines a contract for behaviors that can enhance a component's rendered content with behavior-defined "scripts". These
scripts are executed on the client in response to end user interaction, but can also trigger postbacks back into the JSF
request processing lifecycle.

The usage pattern for client behaviors is as follows:

» The page author attaches a client behavior to a component, typically by specifying a behavior tag as a child of a
component tag.

> When attaching a client behavior to a component, the page author identifies the name of a client "event" to attach to.
The set of valid events are defined by the component.

» At render time, the component (or renderer) retrieves the client behavior and asks it for its script.

Chapter 2 Request Processing Lifecycle 2-23

2.5.10

> The component (or renderer) renders this script at the appropriate location in its generated content (eg. typically in a
DOM event handler).

» When the end user interacts with the component's content in the browser, the behavior-defined script is executed in
response to the page author-specified event.

» The script provides some client-side interaction, for example, hiding or showing content or validating input on the
client, and possibly posts back to the server.

The first client behavior provided by the JSF specification is the AjaxBehavior. This behavior is exposed to a page
author as a Facelets <f :ajax> tag, which can be embedded within any of the standard HTML components as follows:

<h:commandButton>
<f:ajax event="mouseover"/>
</h:commandButton>

When activated in response to end user activity, the <f:ajax> client behavior generates an Ajax request back into the
JSF request processing lifecycle.

The component behavior framework is extensible and allows developers to define custom behaviors and also allows
component authors to enhance custom components to work with behaviors.

System Events

System Events are normatively specified in Section 3.4.3 “System Events”. This section provides an overview of this
feature as it relates to the lifecycle.

System events expand on the idea of lifecycle PhaseEvents. With PhaseEvents, it is possible to have application
scoped PhaseListeners that are given the opportunity to act on the system before and after each phase in the
lifecycle. System events provide a much more fine grained insight into the system, allowing application or component
scoped listeners to be notified of a variety of kinds of events. The set of events supported in the core specification is
given in Section 3.4.3.1 “Event Classes”. To accomodate extensibility, users may define their own kinds of events.

The system event feature is a simple publish/subscribe event model. There is no event queue, events are published
immediately, and always with a call to Application.publishEvent (). There are several ways to declare interest
in a particular kind of event.

» Call Application.subscribeToEvent () to add an application scoped listener.
» Call UIComponent.subscribeToEvent () to add a component scoped listener.
» Use the <f:event> tag to declare a component scoped listener.

» Use the @ListenerFor or @ListenersFor annotation. The scope of the listener is determined by the code that
processes the annotation.

» Use the <system-event-listener> element in an application configuration resource to add an application
scoped listener.

This feature is conceptually related to the lifecycle because there are calls to Application.publishEvent ()
sprinkled throughout the code that gets executed when the lifecycle runs.

2-24 JavaServer Faces Specification * January 2017

2.6

2.6.1

2.6.1.1

2.6.1.2

2.6.1.3

Resource Handling

As shown in the diagram in Section 2.1.2 “Faces Request Generates Faces Response”, [P1-start isResourceRequest rules]
the JSF run-time must determine if the current Faces Request is a Faces Resource Request or a View Request. This must
be accomplished by calling Application.getResourceHandler () .isResourceRequest (). [P1-end] Most
of the normative specification for resource handling is contained in the Javadocs for ResourceHandler and its related
classes. This section contains the specification for resource handling that fits best in prose, rather than in Javadocs.

Packaging Resources

ResourceHandler defines a path based packaging convention for resources. The default implementation of
ResourceHandler must support packaging resources in the web application root or in the classpath, according to the
following specification.Other implementations of ResourceHandler are free to package resources however they like.

Packaging Resources into the Web Application Root

[P1-start web app packaging | The default implementation must support packaging resources in the web application root
under the path

resources/<resourceldentifier>

relative to the web app root. Resources packaged into the web app root must be accessed using the getResource* ()
methods on ExternalContext.[Pl-end]

Packaging Resources into the Classpath

[P1-start classpath packaging [For the default implementation, resources packaged in the classpath must reside under the
JAR entry name:

META-INF/resources/<resourceldentifier>

Resources packaged into the classpath must be accessed using the getResource* () methods of the ClassLoader
obtained by calling the getContextClassLoader () method of the curreth Thread.[P1-end]

Resource Identifiers

<resourceldentifier> consists of several segments, specified as follows.

[P1-start requirements for something to be considered a valid resourceldentifier]

[localePrefix/] [libraryName/] [libraryVersion/] resourceName [/resourceVersion]

The run-time must enforce the following rules to consider a <resourceIdentifier> valid. A
<resourceldentifier> that does not follow these rules must not be considered valid and must be ignored silently.

» The set of characters that are valid for use in the localePrefix, libraryName, libraryVerison,
resourceName and resourceVersion segments of the resource identifier is specififed as XML NameChar
excluding the path separator and °:” characters. The specification for XML NameChar may be seen at
http://www.w3.0rg/TR/REC-xml/#NT-NameChar.

Chapter 2 Request Processing Lifecycle 2-25

» A further restriction applies to libraryName. A 1libraryName must not be an underscore separated sequence of
non-negative integers or a locale string. More rigorously, a 1ibraryName must not match either of the following

regular expressions:
> [0-9]1+([0-9]+)*

» [A-Za-z]{2} (_[A-Za-z]{2} (_[A-Za-z]+)™*)?

» Segments in square brackets [] are optional.

» The segments must appear in the order shown above.

» If libraryVersion is present, it must be preceded by libraryName.

» If libraryVersion is present, any leaf files under /ibraryName must be ignored.

» If resourceVersion is present, it must be preceded by resourceName.

» There must be a ’/’ between adjacent segments in a <resourceIdentifier>

2 If libraryVersion or resourceVersion are present, both must be a ° ’ separated list of integers, neither starting nor
ending with > ’

» If resourceVersion is present, it must be a version number in the same format as libraryVersion. An optional “file

[T3EE)

extension” may be used with the resourceVersion. If “file extension” is used, a “.” character, followed by a “file
extension” must be appended to the version number. See the following table for an example.

[P1-end]

The following examples illustrate the nine valid combinations of the above resource identifier segments.

library
ocalePrefx | libraryName || Version | |resourceName
[optional] [optional] [optional | [required]
1

resource
Version Description actual resourceldentifier
[optional]

A non-localized, non-
ersioned image
Huke.gif esource called Huke.gif
'duke.gif",notina
ibrary

A non-localized, non-
ersioned image
esource called
'duke.gif"ina
ibrary called
'corporate"

corporate Huke.gif corporate/duke.gif

A non-localized, non-
ersioned image

) esource called
corporate p_3 duke.gif 'duke.gif",inversion|
2_3ofthe
'corporate" library

corporate/2 3/duke.gif

A non-localized, version|
1 . 3.4 script resource
basic K] script.js |[L_3_4.3js |palled"script.js",injpasic/2_3/script.js/1_3 4.7js
ersioned 2_3

ibrary called "basic".

A non-versioned style
esource called

de neader.css B " He/header.css
header.css

ocalized for locale "de"|

Version 1_4_2 of style
esource

He AT footer.css|[L_4 2.css[footer.css", de AT/footer.css/1 4 2.css
ocalized for locale
'de AT"

2-26 JavaServer Faces Specification « January 2017

2.6.1.4

zh

‘ersion 24 of style
esource called, "menu—
enu- bar.css" in non-
extraFancy 2 4.css . . zh/extraFancy/menu-bar.css/2 4.css
bar.css - ersioned library, -
'extraFancy",

ocalized for locale "zh"

Non-versioned script
esource called,
njaxTransa 'ajaxTransaction.
ction.js js", in version 0_1 of
ibrary called "mild",

ja/mild/0_1/ajaxTransaction.js

ocalized for locale "ja"

de _ch

ersion 10 of image
esource called
'bg.png", in version
10 of library called
'grassy" localized for

jyrassy 1 0 ©g.png 1 0.png de ch/grassy/1 0/bg.png/l 0.png

ocale "de_ch"

Libraries of Localized and Versioned Resources

An important feature of the resource handler is the ability for resources to be localized, versioned, and collected into
libraries. The localization and versioning scheme is completely hidden behind the API of ResourceHandler and
Resource and is not exposed in any way to the JSF run-time.

[P1-start resource versioning] The default implementation of ResourceHandler.createResource (), for all
variants of that method, must implement the following to discover which actual resource will be encapsulated within the
returned Resource instance. An implementation may perform caching of the resource metadata to improve
performance if the ProjectStage is ProjectStage.Production.

Using the resourceName and libraryName arguments to createResource (), and the resource packaging scheme
specified in Section 2.6.1.1 “Packaging Resources into the Web Application Root”, Section 2.6.1.2 “Packaging
Resources into the Classpath”, and Section 2.6.1.3 “Resource Identifiers”, discover the file or entry that contains the
bytes of the resource. If there are multiple versions of the same library, and libraryVersion is not specified, the library
with the highest version is chosen. If there are multiple versions of the same resource, and resourceVersion is not
specified, the resource with the highest version is chosen. The algorithm is specified in pseudocode.

function createResource (resourceName, libraryName) {
var resource = null;
var resourceld = null;
for (var contract : getLibraryContracts()) {
resourceld = deriveResourceldConsideringResourceloaders (contract, resourceName,
libraryName)
if (null != resourcelId) {
resource = create the resource using the resourceld;
return resource;

// try without a contract
resourceld = deriveResourcelIdConsideringResourceloaders (null, resourceName,
libraryName)
if (null != resourcelId) {
resource = create the resource using the resourceld;
}

return resource;

function deriveResourceldConsideringResourceloaders (contract, resourceName, libraryName)
{

var prefix = web app root resource prefix;

Chapter 2 Request Processing Lifecycle 2-27

var resourceloader = web app resource loader;

// these are shorthand for the prefix and resource loading

// facility specified in Section 2.6.1.1. They are

// not actual API per se.

var resourceld = deriveResourceIdConsideringlLocalePrefix (contract, prefix,
resourceloader, resourceName, libraryName) ;

if (null == resourceld) {
prefix = classpath resource prefix;
resourceloader = classpath resource loader;
// these are shorthand for the prefix and resource
// loading facility specified in Section 2.6.1.2. They are
// not actual API per se.
resourceld = deriveResourceIdConsideringlLocalePrefix (contract, prefix,
resourceloader, resourceName, libraryName) ;
}

return resourceld;

function deriveResourcelIdConsideringLocalePrefix (contract, prefix, resourceloader,
resourceName, libraryName) {

var localePrefix = getLocalePrefix();

var result = deriveResourceld(contract, prefix, resourceloader, resourceName,
libraryName, localePrefix);

// If the application has been configured to have a localePrefix, and the resource

// is not found, try to find it again, without the localePrefix.

if (null == result && null != localePrefix) {

result = deriveResourceld(contract, prefix, resourceloader, resourceName,
libraryName, null);

}

return result;

function deriveResourceld (contract, prefix, resourceloader,
resourceName, libraryName, localePrefix) {

var resourceVersion = null;
var libraryVersion = null;
var resourceld;

if (null != localePrefix) {

prefix = localePrefix + '/' + prefix;

if (null != contract) {
prefix = contract + '/' + prefix;

if (null != libraryName) {
// actual argument is resourcesInContractInJar/resources/resourcesInContractIndar
var libraryPaths = resourceloader.getResourcePaths (
prefix + '/' + libraryName) ;

if (null != libraryPaths && !libraryPaths.isEmpty()) {
libraryVersion = // execute the comment
// Look in the libraryPaths for versioned libraries.
// If one or more versioned libraries are found, take
// the one with the highest version number as the value
// of libraryVersion. If no versioned libraries
// are found, let libraryVersion remain null.

2-28 JavaServer Faces Specification * January 2017

if (null !'= libraryVersion) {

libraryName = libraryName + '/' + libraryVersion;

}

var resourcePaths = resourceloader.getResourcePaths (
prefix + '/' + libraryName + '/' + resourceName) ;

if (null !'= resourcePaths && !resourcePaths.isEmpty()) {
resourceVersion = // execute the comment

// Look in the resourcePaths for versioned resources.
// If one or more versioned resources are found, take
// the one with the &€xhighestd€? version number as the value
// of resourceVersion. If no versioned libraries
// are found, let resourceVersion remain null.
}
if (null !'= resourceVersion) ({
resourceld = prefix + '/' + libraryName + '/' +
resourceName + '/' + resourceVersion;
}
else {
resourceld = prefix + '/' + libraryName + '/' + resourceName;

}

} // end of if (null != libraryName)
else {
// libraryName == null
var resourcePaths = resourceloader.getResourcePaths (
prefix + '/' + resourceName) ;
if (null !'= resourcePaths && !resourcePaths.isEmpty()) {
resourceVersion = // execute the comment

// Look in the resourcePaths for versioned resources.
// If one or more versioned resources are found, take
// the one with the &€xrhighestd€? version number as the value
// of resourceVersion. If no versioned libraries
// are found, let resourceVersion remain null.
}
if (null != resourceVersion) {
resourceld = prefix + '/' + resourceName + '/' +
resourceVersion;
} else {
resourceld = prefix + '/' + resourceName;
}
} // end of else, when libraryName == null
return resourceld;

function getLocalePrefix () {
var localePrefix;
var appBundleName = facesContext.application.messageBundle;
if (null != appBundleName) {
var locale =
// If there is a viewRoot on the current facesContext, use its locale.
// Otherwise, use the locale of the application's ViewHandler
ResourceBundle appBundle = ResourceBundle.getBundle (
appBundleName, locale);
localePrefix = appBundle.getString(ResourceHandler. LOCALE PREFIX);
}
// Any MissingResourceException instances that are encountered
// in the above code must be swallowed by this method, and null
// returned;
return localePrefix;

}
[P1-end]

Chapter 2 Request Processing Lifecycle 2-29

2.6.2 Rendering Resources

Resources such as images, stylesheets and scripts use the resource handling mechanism as outlined in Section 2.6.1
“Packaging Resources”. So, for example:

<h:graphicImage name="Planets.gif” library="images”/>
<h:graphicImage value="#{resource[‘images:Planets.gif’]}"”/>

These entries render exactly the same markup. In addition to using the name and library attributes, stylesheet and
script resources can be “relocated” to other parts of the view. For example, we could specify that a script resource be
rendered within an HTML “head”, “body” or “form” element in the page.

2.6.2.1 Relocatable Resources

2-30

Relocatable resources are resources that can be told where to render themselves, and this rendered location may be
different than the resource tag placement in the view. For example, a portion of the view may be described in the view
declaration language as follows:

<f:view contentType="text/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html;
charset=is0-8859-1" />
<title>Example View</title>
</h:head>
<h:body>
<h:form>
<h:outputScript name="ajax.js” library="javax.faces”
target="head” />
</h:form>
</h:body>
</f:view>

The <h:outputScript> tag refers to the renderer, ScriptRenderer, thatlistens for PostAddToViewEvent event
types:

@ListenerFor (facesEventClass=PostAddToViewEvent.class,
sourceClass=UIOutput.class)

public class ScriptRenderer extends Renderer implements
ComponentSystemEventListener {...

Refer to Section 3.4 “Event and Listener Model”. When the component for this resource is added to the view, the
ScriptRenderer processEvent method adds the component to a facet (named by the target attribute) under the
view root. using the UIViewRoot component resource methods as described in Section 4.1.19.3 “Methods”.

The <h:head> and <h:body> tags refer to the renderers HeadRenderer and BodyRenderer respectively. They are described
in the Standard HTML Renderkit documentation referred to in Section 8.6 “Standard HTML RenderKit Implementation”.
During the rendering phase, the encode methods for these renderers render the HTML “head” and “body” elements
respectively. Then they render all component resources under the facet child (named by target) under the UIViewRoot
using the UIViewRoot component resource methods as described in Section 4.1.19.3 “Methods”.

JavaServer Faces Specification « January 2017

2.6.2.2

Existing component libraries (with existing head and body components), that want to use this resource loading feature must
follow the rendering requirements described in Section 8.6 “Standard HTML RenderKit Implementation”.

Resource Rendering Using Annotations

Components and renderers may be declared as requiring a resource using the @ResourceDependency annotation. The
implementation must scan for the presence of this annotation on the component that was added to the List of child
components. Check for the presence of the annotation on the renderer for this component (if there is a renderer for the
component). The annotation check must be done immediately after the component is added to the List. Refer to
Section 3.1.7 “Component Tree Manipulation”for detailed information.

2.7

Resource Library Contracts

[P1-start _contract packaging]A resource library contract is a resource library, as specified in the preceding section,
except that instead of residing in the resources directory of the web-app root, or in the META-INF/resources
JAR entry name in a JAR file, it resides in the contracts directory of the web-app root, or in the META-
INF/contracts JAR entry name in a JAR file. When packaged in a JAR file, there is one additional packaging
requirement: each resource library contract in the JAR must have a marker file. The name of the file is given by the
value of the symbolic constant javax.faces.application.ResourceHandler .RESOURCE CONTRACT XML.
This may be a zero length file, though future versions of the specification may use the file to declare the usage contract.
[P1-end] The requirement to have a marker file enables implementations to optimize for faster deployment while still
enabling automatic discovery of the available contracts.

Following is a listing of the entries in a JAR file containing two resource library contracts.

META-INF/contracts/

siteLayout/
javax.faces.contract.xml
topNav_template.xhtml
leftNav_ foo.xhtml
styles.css
script.js
background.png

subSiteLayout/
javax.faces.contract.xml
sub_ template.xhtml

All of the other packaging, encoding and decoding requirements are the same as for resource libraries.

See Section 10.1.3 “Resource Library Contracts Background” for a non-normative overview of the feature, including a
brief usage example.

Chapter 2 Request Processing Lifecycle 2-31

2-32 JavaServer Faces Specification * January 2017

User Interface Component Model

A JSF user interface component is the basic building block for creating a JSF user interface. A particular component
represents a configurable and reusable element in the user interface, which may range in complexity from simple (such
as a button or text field) to compound (such as a tree control or table). Components can optionally be associated with
corresponding objects in the data model of an application, via value expressions.

JSF also supports user interface components with several additional helper APIs:

2 Converters—Pluggable support class to convert the markup value of a component to and from the corresponding type
in the model tier.

» Events and Listeners—An event broadcast and listener registration model based on the design patterns of the
JavaBeans Specification, version 1.0.1.

» Validators—Pluggable support classes that can examine the local value of a component (as received in an incoming
request) and ensure that it conforms to the business rules enforced by each Validator. Error messages for validation
failures can be generated and sent back to the user during rendering.

The user interface for a particular page of a JSF-based web application is created by assembling the user interface
components for a particular request or response into a view. The view is a tree of classes that implement UIComponent.
The components in the tree have parent-child relationships with other components, starting at the root element of the
tree, which must be an instance of UIViewRoot. Components in the tree can be anonymous or they can be given a
component identifier by the framework user. Components in the tree can be located based on component identifiers,
which must be unique within the scope of the nearest ancestor to the component that is a naming container. For complex
rendering scenarios, components can also be attached to other components as facets.

This chapter describes the basic architecture and APIs for user interface components and the supporting APIs.

3.1

UIComponent and UIComponentBase

The base abstract class for all user interface components is javax.faces.component.UIComponent. This class
defines the state information and behavioral contracts for all components through a Java programming language API,
which means that components are independent of a rendering technology such as JavaServer Pages (JSP). A standard set
of components (described in Chapter 4 “Standard User Interface Components”) that add specialized properties, attributes,
and behavior, is also provided as a set of concrete subclasses.

Component writers, tool providers, application developers, and JSF implementors can also create additional
UIComponent implementations for use within a particular application. To assist such developers, a convenience
subclass, javax.faces.component.UIComponentBase, is provided as part of JSF. This class provides useful
default implementations of nearly every UIComponent method, allowing the component writer to focus on the unique
characteristics of a particular UIComponent implementation.

The following subsections define the key functional capabilities of JSF user interface components.

Chapter 3 User Interface Component Model 3-1

3.1.1

3.1.2

3.1.3

3.14

Component Identifiers

public String getId();

public void setId(String componentId);

[N/T-start may-component-identifier] Every component may be named by a component identifier that must conform to
the following rules:

» They must start with a letter (as defined by the Character.isLetter () method).

» Subsequent characters must be letters (as defined by the Character.isLetter () method), digits as defined by
the Character.isDigit () method, dashes (‘-’), or underscores (*_’).

[P1-end] To minimize the size of responses generated by JavaServer Faces, it is recommended that component identifiers
be as short as possible.

If a component has been given an identifier, it must be unique in the namespace of the closest ancestor to that component
that is a NamingContainer (if any).

Component Type

While not a property of UIComponent, the component-type is an important piece of data related to each
UIComponent subclass that allows the Application instance to create new instances of UIComponent subclasses
with that type. Please see Section 7.1.12 “Object Factories” for more on component-type.

Component types starting with “javax.faces.” are reserved for use by the JSF specification.

Component Family

public String getFamily();

Each standard user interface component class has a standard value for the component family, which is used to look up
renderers associated with this component. Subclasses of a generic UIComponent class will generally inherit this property
from its superclass, so that renderers who only expect the superclass will still be able to process specialized subclasses.

Component families starting with “javax.faces.” are reserved for use by the JSF specification.

ValueExpression properties

Properties and attributes of standard concrete component classes may be value expression enabled. This means that,
rather than specifying a literal value as the parameter to a property or attribute setter, the caller instead associates a
ValueExpression (see Section 5.8.3 “ValueBinding”) whose getValue () method must be called (by the property
getter) to return the actual property value to be returned if no value has been set via the corresponding property setter. If
a property or attribute value has been set, that value must be returned by the property getter (shadowing any associated
value binding expression for this property).

| 3-2 JavaServer Faces Specification « March 2017

3.1.5

Value binding expressions are managed with the following method calls:

public ValueExpression getValueExpression (String name) ;

public void setValueExpression(String name, ValueExpression
expression);

where name is the name of the attribute or property for which to establish the value expression. [P1-start
setValueExpression rules] The implementation of setValueExpression must detemine if the expression is a literal by
calling ValueExpression.isLiteralText () on the expression argument. If the expression argument is
literal text, then ValueExpression.getValue () must be called on the expression argument. The result must be
used as the value argument, along with the name argument to this component’s getAttributes () .put (name,
value) method call. [P1-end] [P1-start which properties are value expression enabled] For the standard component
classes defined by this specification, all attributes, and all properties other than id, parent, action, listener,
actionListener, valueChangeListener, and validator are value expression enabled. The action,
listener, actionListener, valueChangeListener, and validator attributes are method expression
enabled.[P1-end]

In previous versions of this specification, this concept was called “value binding”. Methods and classes referring to this
concept are deprecated, but remain implemented to preserve backwards compatibility.

public ValueBinding getValueBinding (String name) ;

public void setValueBinding (String name, ValueBinding binding);

Please consult the javadoc for these methods to learn how they are implemented in terms of the new “value expression”
concept.

Component Bindings

A component binding is a special value expression that can be used to facilitate “wiring up” a component instance to a
corresponding property of a JavaBean that is associated with the page, and wants to manipulate component instances
programatically. It is established by calling setValueExpression () (see Section 3.1.4 “ValueExpression
properties”) with the special property name binding.

The specified ValueExpression must point to a read-write JavaBeans property of type UIComponent (or
appropriate subclass). Such a component binding is used at two different times during the processing of a Faces Request:

» [P3-start how a component binding is used from a JSP page] When a component instance is first created (typically by
virtue of being referenced by a UIComponentELTag in a JSP page), the JSF implementation will retrieve the
ValueExpression for the name binding, and call getValue () on it. If this call returns a non-null
UIComponent value (because the JavaBean programmatically instantiated and configured a component already),
that instance will be added to the component tree that is being created. If the call returns null, a new component
instance will be created, added to the component tree, and setValue () will be called on the ValueExpression
(which will cause the property on the JavaBean to be set to the newly created component instance). [P3-end]

» [Pl-start how a component binding is used when restoring the tree]When a component tree is recreated during the
Restore View phase of the request processing lifecycle, for each component that has a ValueExpression
associated with the name “binding”, setValue () will be called on it, passing the recreated component instance.
[P1-end]

Component bindings are often used in conjunction with JavaBeans that are dynamically instantiated via the Managed
Bean Creation facility (see Section 5.8.1 “VariableResolver and the Default VariableResolver”). If application
developers place managed beans that are pointed at by component binding expressions in any scope other than request

Chapter 3 User Interface Component Model 3-3

3.1.6

3.1.7

scope, the system cannot behave correctly. This is because placing it in a scope wider than request scope would require
thread safety, since UIComponent instances depend on running inside of a single thread. There are also potentially
negative impacts on memory management when placing a component binding in “session” or “view” scopes.

Client Identifiers

Client identifiers are used by JSF implementations, as they decode and encode components, for any occasion when the
component must have a client side name. Some examples of such an occasion are:

» to name request parameters for a subsequent request from the JSF-generated page.
» to serve as anchors for client side scripting code.
» to serve as anchors for client side accessibility labels.

public String getClientId(FacesContext context);
protected String getContainerClientId (FacesContext context);

The client identifier is derived from the component identifier (or the result of calling
UIViewRoot.createUniqueId () if there is not one), and the client identifier of the closest parent component that
is a NamingContainer according to the algorithm specified in the javadoc for UIComponent ..getClientId ().
The Renderer associated with this component, if any, will then be asked to convert this client identifier to a form
appropriate for sending to the client. The value returned from this method must be the same throughout the lifetime of
the component instance unless setId () is called, in which case it will be recalculated by the next call to
getClientId().

Component Tree Manipulation

public UIComponent getParent();

public void setParent (UIComponent parent);

Components that have been added as children of another component can identify the parent by calling the getParent
method. For the root node component of a component tree, or any component that is not part of a component tree,
getParent will return null. In some special cases, such as transient components, it is possible that a component in
the tree will return null from getParent(). The setParent () method should only be called