
JDBC™ 4.2 Specification

JSR 221

Lance Andersen, Specification Lead
March 2014

March 2014 Final v1.0

Please
Recycle

ORACLE AMERICA, INC. IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION THAT YOU

ACCEPT ALL OF THE TERMS CONTAINED IN THIS AGREEMENT. PLEASE READ THE TERMS AND CONDITIONS OF THIS

AGREEMENT CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THE

AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY IT, SELECT THE "DECLINE" BUTTON AT THE BOTTOM OF THIS PAGE.

Specification: JSR 221 JDBC API ("Specification")

Version: 4.2

Status: Maintenance Release

Specification Lead: Oracle America, Inc. ("Specification Lead")

Release: March 2014

Copyright 2014 Oracle America, Inc.

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited

license (without the right to sublicense), under Specification Lead's applicable intellectual property rights to view, download, use and

reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing applications intended to run on an

implementation of the Specification, provided that such applications do not themselves implement any portion(s) of the Specification, and (ii)

discussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written communications

which discuss the Specification provided that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a perpetual, non-exclusive, non-transferable,

worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to the

provisions of subsection 4 below, patent rights it may have covering the Specification to create and/or distribute an Independent

Implementation of the Specification that: (a) fully implements the Specification including all its required interfaces and functionality; (b) does

not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java

interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Specification or Specifications

being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable TCK Users

Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your not acting

outside its scope. No license is granted hereunder for any other purpose (including, for example, modifying the Specification, other than to the

extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks, service

marks, or trade names of Specification Lead or Specification Lead's licensors is granted hereunder. Java, and Java-related logos, marks and

names are trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any

other particular "pass through" requirements in any license You grant concerning the use of your

Independent Implementation or products derived from it. However, except with respect to

Independent Implementations (and products derived from them) that satisfy limitations (a)-(c) from the

previous paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses

under Specification Lead's applicable intellectual property rights; nor (b) authorize your licensees to

make any claims concerning their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2

above that would be infringed by all technically feasible implementations of the Specification, such

license is conditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party

seeking it from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent

rights which are or would be infringed by all technically feasible implementations of the Specification to

develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Specification Lead and covered by the license

granted under subparagraph 2, whether or not their infringement can be avoided in a technically

feasible manner when implementing the Specification, such license shall terminate with respect to such

claims if You initiate a claim against Specification Lead that it has, in the course of performing its

responsibilities as the Specification Lead, induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Specification Lead and covered by the license

granted under subparagraph 2 above, where the infringement of such claims can be avoided in a

technically feasible manner when implementing the Specification such license, with respect to such

claims, shall terminate if You initiate a claim against Specification Lead that its making, having made,

using, offering to sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an

implementation of the Specification that neither derives from any of Specification Lead's source code or

binary code materials nor, except with an appropriate and separate license from Specification Lead,

includes any of Specification Lead's source code or binary code materials; "Licensor Name Space" shall

mean the public class or interface declarations whose names begin with "java", "javax", "com.oracle”,

“com.sun” or their equivalents in any subsequent naming convention adopted by Oracle America, Inc.

through the Java Community Process, or any recognized successors or replacements thereof; and

"Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide

provided by Specification Lead which corresponds to the Specification and that was available either (i)

from Specification Lead's 120 days before the first release of Your Independent Implementation that

allows its use for commercial purposes, or (ii) more recently than 120 days from such release but against

which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the

Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE

SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not

represent any commitment to release or implement any portion of the Specification in any product. In addition, the Specification could include

technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS LICENSORS BE LIABLE FOR ANY

DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT,

CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING THE SPECIFICATION,

EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting from: (i) your use of

the Specification; (ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions

or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or

subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in this

license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R.

2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such

Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive,

worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and

use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the

International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to

comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export

or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written
communications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote,
order, acknowledgment, or other communication between the parties relating to its subject matter during the term of this Agreement. No
modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each party.

Oracle Corporation
www.oracle.com

Submit comments about this document at: jsr-221-comments@jcp.org

v

Contents

Preface 1

Typographic Conventions 2

Submitting Feedback 2

1. Introduction 3

1.1 The JDBC API 3

1.2 Platforms 3

1.3 Target Audience 4

1.4 Acknowledgements 4

2. Goals 7

2.1 History 7

2.2 Overview of Goals 7

3. Summary of New Features 11

3.1 Overview of changes 11

4. Overview 15

4.1 Establishing a Connection 15

4.2 Executing SQL Statements and Manipulating Results 16

4.2.1 Support for SQL Advanced Data Types 17

vi JDBC 4.2 Specification • March 2014

4.3 Two-tier Model 17

4.4 Three-tier Model 18

4.5 JDBC in the Java EE Platform 20

5. Classes and Interfaces 21

5.1 The java.sql Package 21

5.2 The javax.sql Package 25

6. Compliance 29

6.1 Definitions 29

6.2 Guidelines and Requirements 30

6.3 JDBC 4.2 API Compliance 31

6.4 Java EE JDBC Compliance 35

7. Database Metadata 37

7.1 Creating a DatabaseMetadata Object 38

7.2 Retrieving General Information 38

7.3 Determining Feature Support 39

7.4 Data Source Limits 39

7.5 SQL Objects and Their Attributes 40

7.6 Transaction Support 40

7.7 New Methods 41

7.8 Modified Methods 41

8. Exceptions 43

8.1 SQLException 43

8.1.1 Support for the Java SE Chained Execeptions 44

8.1.2 Navigating SQLExceptions 44

8.1.2.1 Using a For-Each Loop with SQLExceptions 45

8.2 SQLWarning 46

Contents vii

8.3 DataTruncation 46

8.3.1 Silent Truncation 47

8.4 BatchUpdateException 47

8.5 Categorized SQLExceptions 48

8.5.1 NonTransient SQLExceptions 48

8.5.2 Transient SQLExceptions 49

8.5.3 SQLRecoverableException 50

8.6 SQLClientinfoException 50

9. Connections 51

9.1 Types of Drivers 52

9.2 The Driver Interface 52

9.2.1 Loading a driver that implements java.sql.Driver 53

9.3 The DriverAction Interface 53

9.4 The DriverManager Class 54

9.5 The SQLPermission Class 56

9.6 The DataSource Interface 56

9.6.1 DataSource Properties 57

9.6.2 The JNDI API and Application Portability 58

9.6.3 Getting a Connection with a DataSource Object 59

9.6.4 Closing Connection Objects 59

9.6.4.1 Connection.close 60

9.6.4.2 Connection.isClosed 60

9.6.4.3 Connection.isValid 60

10. Transactions 61

10.1 Transaction Boundaries and Auto-commit 61

10.1.1 Disabling Auto-commit Mode 62

10.2 Transaction Isolation Levels 62

viii JDBC 4.2 Specification • March 2014

10.2.1 Using the setTransactionIsolation Method 63

10.2.2 Performance Considerations 64

10.3 Savepoints 64

10.3.1 Setting and Rolling Back to a Savepoint 65

10.3.2 Releasing a Savepoint 65

11. Connection Pooling 67

11.1 ConnectionPoolDataSource and PooledConnection 69

11.2 Connection Events 70

11.3 Connection Pooling in a Three-tier Environment 71

11.4 DataSource Implementations and Connection Pooling 72

11.5 Deployment 74

11.6 Reuse of Statements by Pooled Connections 75

11.6.1 Using a Pooled Statement 76

11.6.2 Closing a Pooled Statement 77

11.7 Statement Events 78

11.8 ConnectionPoolDataSource Properties 79

12. Distributed Transactions 81

12.1 Infrastructure 81

12.2 XADataSource and XAConnection 84

12.2.1 Deploying an XADataSource Object 85

12.2.2 Getting a Connection 86

12.3 XAResource 86

12.4 Transaction Management 87

12.4.1 Two-phase Commit 88

12.5 Closing the Connection 90

12.6 Limitations of the XAResource Interface 90

13. Statements 93

Contents ix

13.1 The Statement Interface 93

13.1.1 Creating Statements 93

13.1.1.1 Setting ResultSet Characteristics 94

13.1.2 Executing Statement Objects 94

13.1.2.1 Returning a ResultSet object 95

13.1.2.2 Returning an Update Count 95

13.1.2.3 Returning Unknown or Multiple Results 96

13.1.3 Limiting the execution time for Statement Objects 98

13.1.4 Closing Statement Objects 98

13.2 The PreparedStatement Interface 99

13.2.1 Creating a PreparedStatement Object 99

13.2.1.1 Setting ResultSet Characteristics 99

13.2.2 Setting Parameters 100

13.2.2.1 Type Conversions 101

13.2.2.2 National Character Set Conversions 102

13.2.2.3 Type Conversions Using the Method setObject 102

13.2.2.4 Setting NULL Parameters 103

13.2.2.5 Clearing Parameters 104

13.2.3 Describing Outputs and Inputs of a PreparedStatement
Object 104

13.2.4 Executing a PreparedStatement Object 105

13.2.4.1 Returning a ResultSet Object 105

13.2.4.2 Returning an Update Count 106

13.2.4.3 Returning Unknown or Multiple Results 106

13.3 The CallableStatement Interface 107

13.3.1 Creating a CallableStatement Object 107

13.3.2 Setting Parameters 108

13.3.2.1 IN Parameters 109

13.3.2.2 OUT Parameters 109

x JDBC 4.2 Specification • March 2014

13.3.2.3 INOUT Parameters 110

13.3.2.4 Clearing Parameters 110

13.3.3 Executing a CallableStatement Object 110

13.3.3.1 Returning a Single ResultSet Object 110

13.3.3.2 Returning an Update Count 111

13.3.3.3 Returning Unknown or Multiple Results 111

13.3.3.4 REF Cursor Support 112

13.4 Escape Syntax 113

13.4.1 Scalar Functions 114

13.4.2 Date and Time Literals 114

13.4.3 Outer Joins 115

13.4.4 Stored Procedures and Functions 116

13.4.5 LIKE Escape Characters 116

13.4.6 Limiting Returned Rows Escape 117

13.5 Performance Hints 117

13.6 Retrieving Auto Generated Values 118

14. Batch Updates 121

14.1 Description of Batch Updates 121

14.1.1 Statements 121

14.1.2 Successful Execution 122

14.1.3 Handling Failures during Execution 123

14.1.4 PreparedStatement Objects 124

14.1.5 CallableStatement Objects 126

15. Result Sets 127

15.1 Kinds of ResultSet Objects 127

15.1.1 ResultSet Types 127

15.1.2 ResultSet Concurrency 128

Contents xi

15.1.3 ResultSet Holdability 129

15.1.3.1 Determining ResultSet Holdability 129

15.1.4 Specifying ResultSet Type, Concurrency and Holdability 130

15.2 Creating and Manipulating ResultSet Objects 130

15.2.1 Creating ResultSet Objects 130

15.2.2 Cursor Movement 131

15.2.3 Retrieving Values 132

15.2.3.1 Data Type Conversions 133

15.2.3.2 ResultSet Metadata 133

15.2.3.3 Retrieving NULL values 133

15.2.4 Modifying ResultSet Objects 134

15.2.4.1 Updating a Row 134

15.2.4.2 Deleting a Row 135

15.2.4.3 Inserting a Row 137

15.2.4.4 Positioned Updates and Deletes 138

15.2.5 Closing a ResultSet Object 139

16. Advanced Data Types 141

16.1 Taxonomy of SQL Types 141

16.2 Mapping of Advanced Data Types 143

16.3 Blob, Clob and NClob Objects 143

16.3.1 Blob, Clob and NClob Implementations 143

16.3.2 Creating Blob, Clob and NClob Objects 144

16.3.3 Retrieving BLOB, Clob and NClob Values in a ResultSet 144

16.3.4 Accessing Blob, Clob and NClob Object Data 145

16.3.5 Storing Blob, Clob and NClob Objects 145

16.3.6 Altering Blob, Clob and NClob Objects 146

16.3.7 Releasing Blob, Clob and NClob Resources 147

16.4 SQLXML Objects 147

xii JDBC 4.2 Specification • March 2014

16.4.1 Creating SQLXML Objects 147

16.4.2 Retrieving SQLXML values in a ResultSet 148

16.4.3 Accessing SQLXML Object Data 148

16.4.4 Storing SQLXML Objects 149

16.4.5 Initializing SQLXML Objects 150

16.4.6 Releasing SQLXML Resources 151

16.5 Array Objects 151

16.5.1 Array Implementations 151

16.5.2 Creating Array Objects 152

16.5.3 Retrieving Array Objects 152

16.5.4 Storing Array Objects 153

16.5.5 Updating Array Objects 153

16.5.6 Releasing Array Resources 154

16.6 Ref Objects 154

16.6.1 Retrieving REF Values 154

16.6.2 Retrieving the Referenced Value 155

16.6.3 Storing Ref Objects 155

16.6.4 Storing the Referenced Value 155

16.6.5 Metadata 156

16.7 Distinct Types 156

16.7.1 Retrieving Distinct Types 156

16.7.2 Storing Distinct Types 157

16.7.3 Metadata 157

16.8 Structured Types 158

16.8.1 Creating Structured Objects 158

16.8.2 Retrieving Structured Types 159

16.8.3 Storing Structured Types 159

16.8.4 Metadata 159

Contents xiii

16.9 Datalinks 160

16.9.1 Retrieving References to External Data 160

16.9.2 Storing References to External Data 160

16.9.3 Metadata 161

16.10 RowId Objects 161

16.10.1 Lifetime of RowId Validity 161

16.10.2 Retrieving RowId Values 162

16.10.3 Using RowId Values 162

17. Customized Type Mapping 163

17.1 The Type Mapping 163

17.2 Class Conventions 164

17.3 Streams of SQL Data 165

17.3.1 Retrieving Data 165

17.3.2 Storing Data 166

17.4 Examples 167

17.4.1 An SQL Structured Type 167

17.4.2 SQLData Implementations 169

17.4.3 Mirroring SQL Inheritance in the Java Programming Language
173

17.4.4 Example Mapping of SQL DISTINCT Type 174

17.5 Effect of Transform Groups 175

17.6 Generality of the Approach 176

17.7 NULL Data 176

18. Relationship to Connectors 179

18.1 System Contracts 179

18.2 Mapping Connector System Contracts to JDBC Interfaces 180

18.3 Packaging JDBC Drivers in Connector RAR File Format 181

xiv JDBC 4.2 Specification • March 2014

19. Wrapper Interface 185

19.1 Wrapper interface methods 185

19.1.1 unwrap method 186

19.1.2 isWrapperFor method 186

A. Revision History 187

B. Data Type Conversion Tables 189

B.1 JDBC Types Mapped to Java Types 189

B.2 Java Types Mapped to JDBC Types 191

B.3 JDBC Types Mapped to Java Object Types 192

B.4 Java Object Types Mapped to JDBC Types 194

B.5 Conversions by setObject and setNull from Java Object Types to JDBC
Types 196

B.6 Type Conversions Supported by ResultSet getter Methods 198

C. Scalar Functions 203

C.1 NUMERIC FUNCTIONS 203

C.2 STRING FUNCTIONS 204

C.3 TIME and DATE FUNCTIONS 205

C.4 SYSTEM FUNCTIONS 206

C.5 CONVERSION FUNCTIONS 206

D. Related Documents 209

1

Preface

This document supersedes and consolidates the content of these predecessor
specifications:

n “JDBC: A Java SQL API”

n “JDBC 2.1 API”

n “JDBC 2.0 Standard Extension API”

n “JDBC 3.0 Specification”

This document introduces a range of new features for the JDBC API and is combined
with various specification improvements that focus on features introduced in or
before the JDBC 3.0 API. Where possible, any adjustment to the JDBC 3.0 API is
marked for easy identification - look for the JDBC 4.2 API demarcation for specific
features introduced in this revised and updated specification.

Readers can also download the API specification (JavadocTM API and comments) for
a complete and precise definition of JDBC classes and interfaces. This documentation
is available from the download page at

https://jcp.org/en/jsr/detail?id=221

2 JDBC 4.2 Specification • March 2014

Typographic Conventions

Submitting Feedback
Please send any comments and questions concerning this specification to:

 jsr-221-comments@jcp.org

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized

Command-line variable;
replace with a real name or
value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

3

CHAPTER 1

Introduction

1.1 The JDBC API
The JDBCTM API provides programmatic access to relational data from the JavaTM
programming language. Using the JDBC API, applications written in the Java
programming language can execute SQL statements, retrieve results, and propagate
changes back to an underlying data source. The JDBC API can also be used to
interact with multiple data sources in a distributed, heterogeneous environment.

The JDBC API is based on the X/Open SQL CLI, which is also the basis for ODBC.
JDBC provides a natural and easy-to-use mapping from the Java programming
language to the abstractions and concepts defined in the X/Open CLI and SQL
standards.

Since its introduction in January 1997, the JDBC API has become widely accepted
and implemented. The flexibility of the API allows for a broad range of
implementations.

1.2 Platforms
The JDBC API is part of the Java platform, which includes the JavaTM Standard
Edition (JavaTM SE) and the JavaTM Enterprise Edition (JavaTM EE). The JDBC API is
divided into two packages: java.sql and javax.sql. Both packages are included
in the Java SE and Java EE platforms.

4 JDBC 4.2 Specification • March 2014

1.3 Target Audience
This specification is targeted primarily towards the vendors of these types of
products:

n drivers that implement the JDBC API

n application servers providing middle-tier services above the driver layer

n tools that use the JDBC API to provide services such as application generation

This specification is also intended to serve the following purposes:

n an introduction for end-users whose applications use the JDBC API

n a starting point for developers of other APIs layered on top of the JDBC API

1.4 Acknowledgements
The JDBC 4.2 specification work is being conducted as part of JSR-221 under the Java
Community Process. This specification is the result of the collaborative efforts of the
JDBC 4.2 Expert Group whose individual members contributed countess hours to
ensure the success of this specification. We would like to thank the following
members for their contributions:

Lance Andersen, Oracle (Specification Lead)

Mark Biamonte, DataDirect Technologies

Volker Berlin

Jesse Davis, DataDirect Technologies

Christopher Farrar, IBM

John Goodson, DataDirect Technologies

Karim Khamis, Sybase

Mark Matthews, Oracle

Marco Paskamp, SAP AG

Ajit Sabnis, Sybase

Douglas Surber, Oracle

Joe Weinstein, Oracle

Chapter 1 Introduction 5

Thanks also go to the many people behind the scenes who have helped and
supported this effort: Ian Evans , Jeff Dinkins, Rick Hillegas, Eric Jendrock, Knut
Anders Hatlen, and Dag Wanvik.

Last, but not least, we would like to thank the previous JDBC specification leads for
their contributions to the success of JDBC: Graham Hamilton, Rick Cattell, Seth
White, Jon Ellis, Linda Ho and Jonathan Bruce.

6 JDBC 4.2 Specification • March 2014

7

CHAPTER 2

Goals

2.1 History
The JDBC API is a mature technology, having first been specified in January 1997. In
its initial release, the JDBC API focused on providing a basic call-level interface to
SQL databases. The JDBC 2.1 specification and the 2.0 Optional Package
specification then broadened the scope of the API to include support for more
advanced applications and for the features required by application servers to
manage use of the JDBC API on behalf of their applications.

The JDBC 3.0 specification operated with the stated goal to round out the API by
filling in smaller areas of missing functionality. With JDBC 4.2, our goals are two
fold: Improve the Ease-of-Development experience for all developers working with
SQL in the Java platform. Secondly, provide a range of enterprise level features to
expose JDBC to a richer set of tools and APIs to manage JDBC resources.

2.2 Overview of Goals
The following list outlines the goals and design philosophy for the JDBC API in
general and the JDBC 4.2 API in particular:

1. Fit into the Java EE and Java SE platforms

The JDBC API is a constituent technology of the Java platform. The JDBC 4.2
API should be aligned with the overall direction of the Java Enterprise Edition
and Java Standard Edition platforms. In addition, recent developments with
the Java SE platform have exposed a range of new features and language
improvements that are extensively used in this specification.

8 JDBC 4.2 Specification • March 2014

2. Be consistent with SQL:2003

The JDBC API provides programmatic access from applications written in the
Java programming language to standard SQL. JDBC 3.0 sought to ensure it’s
support for a subset of the SQL99 features that were likely to be widely
supported by the industry. Similarly for JDBC 4.2, support for SQL:2003 is
focused on the major components of this specification that we anticipate will
be supported for the foreseeable future.

3. Offer vendor-neutral access to common features

The JDBC API strives to provide high-bandwidth access to features commonly
supported across different vendor implementations. The goal is to provide a
degree of feature access comparable to what can be achieved by native
applications. However, the API must be general and flexible enough to allow
for a wide range of implementations.

4. Maintain the focus on SQL

The focus of the JDBC API has always been on accessing relational data from
the Java programming language. This goal, previously stated in the JDBC 3.0
API remains core to the principles on which this specification is built. The
provision of ease of development themed improvements including APIs and
utilities continue to focus on the needs for the SQL based software
development from the Java platform. Similarly to previous specifications, this
does not preclude interacting with additional technologies such as XML,
CORBA and non-relational data.

5. Provide a foundation for tools and higher-level APIs

The JDBC API presents a standard API to access a wide range of underlying
data sources or legacy systems. Implementation differences are made
transparent through JDBC API abstractions, making it a valuable target
platform for tools vendors who want to create portable tools and applications.

Because it is a “call-level” interface from the Java programming language to
SQL, the JDBC API is also suitable as a base layer for higher-level facilities
such as Enterprise JavaBeans (EJB) container-managed persistence, SQLJ and
the JDBC RowSet implementation.

6. Keep it simple

The JDBC API is intended to be a simple-to-use, straight forward interface
upon which more complex entities can be built. This goal is achieved by
defining many compact, single-purpose methods instead of a smaller number
of complex, multipurpose ones with control flag parameters.

7. Enhance reliability, availability, and scalability

Chapter 2 Goals 9

Reliability, availability, and scalability are the themes of the Java EE and Java
SE platforms, as well as the direction for future Java platforms. The JDBC API
stays true to these themes by enhancing support in several areas, including
resource management, the reuse of prepared statements across logical
connections, and error handling.

8. Maintain backward compatibility with existing applications and drivers

Existing JDBC technology-enabled drivers (JDBC drivers) and the applications
that use them must continue to work in an implementation of the Java virtual
machine that supports the JDBC 4.2 API. Applications that use only features
defined in earlier releases of the JDBC API will not require changes to continue
running. It should be straightforward for existing applications to migrate to
JDBC 4.2 technology.

9. Close Association with JDBC RowSet implementations

Java SE contains a standard JDBC RowSet implementation as specified in JDBC
RowSet Implementations (JSR-114). This specification will provide a set of
utilities described at both the utility class level and the Meta Data language
level. This will allow developers to easily migrate JDBC-technology enabled
applications towards the JDBC RowSet model that enables disconnected data
source access in addition to the ability to manage relational data stores from an
XML stand-point.

10. Allow forward compatibility with Connectors

The Connector architecture defines a standard way to package and deploy a
resource adapter that allows a Java EE container to integrate its connection,
transaction, and security management with those of an external resource. The
JDBC API provides the migration path for JDBC drivers to the Connector
architecture. It should be possible for vendors whose products use JDBC
technology to move incrementally towards implementing the Connector API.
The expectation is that JDBC driver vendors will write resource manager
wrappers around their existing data source implementations so that they can
be reused in a Connector framework.

11. Specify requirements unambiguously

The requirements for JDBC compliance need to be unambiguous and easy to
identify. The JDBC specification and the API documentation (Javadoc) will
clarify which features are required and which are optional.

10 JDBC 4.2 Specification • March 2014

11

CHAPTER 3

Summary of New Features

3.1 Overview of changes
The JDBC 4.2 API introduces new material and changes in the following areas:

n Added support for REF CURSOR.

The REF CURSOR data type is supported by several databases to return a
result set from a stored procedure.

n Support for large update counts

JDBC methods that return an update count currently return an int value.
This has caused problems as DataSets continue to grow, in certain
environments.

n Addition of the java.sql.DriverAction interface

This interface may be implemented by a driver that wants to be notified by
DriverManager when the driver is deregistered.

n Addition of the java.sql.SQLType interface

An interface used to create an object that represents a generic SQL Type,
called a JDBC type or a vendor specific type.

n Addition of the java.sql.JDBCType Enum

An Enum used to identify generic SQL Types, called JDBCType. The intent is to
use JDBCType in place of the constants, defined in Types.java.

n Additional Mappings to Table B-4, Mapping from Java Object to JDBC Types

Added support to map java.time.LocalDate to JDBC DATE.

Added support to map java.time.LocalTime to JDBC TIME

12 JDBC 4.2 Specification • March 2014

Added support to map java.time.LocalDateTime to JDBC TIMESTAMP.

Added support to map java.time.LocalOffsetTime to JDBC
TIME_WITH_TIMEZONE.

Added support to map java.time.LocalOffsetDateTime to JDBC
TIMESTAMP_WITH_TIMEZONE.

n Additional Mappings to Table B-5, Performed by setObject and setNull between
Java Object Types and Target JDBC Types

Allow conversion of java.time.LocalDate to CHAR, VARCHAR,
LONGVARCHAR, and DATE.

Allow conversion of java.time.LocalTime to CHAR, VARCHAR,
LONGVARCHAR, and TIME.

Allow conversion of java.time.LocalTime to CHAR, VARCHAR,
LONGVARCHAR, and TIMESTAMP.

Allow conversion of java.time.OffsetTime to CHAR, VARCHAR,
LONGVARCHAR, and TIME_WITH_TIMESTAMP.

Allow conversion of java.time.OffsetDateTime to CHAR, VARCHAR,
LONGVARCHAR, TIME_WITH_TIMESTAMP and
TIMESTAMP_WITH_TIMESTAMP.

n Additional Mappings to Table B-6, Use ResultSet getter Methods to retrieve JDBC
Types

Allow getObject to return TIME_WITH_TIMEZONE,
TIMESTAMP_WITH_TIMEZONE.

n JDBC API changes

The following changes were made to existing JDBC interfaces..

n BatchUpdateException

Added a new constructor to support large update counts.

Added the method getLargeUpdateCounts.

n Connection

Added the methods abort,getNetworkTimeout, getSchema,
setNetworkTimeout, setSchema.

Clarified the getMapType, setSchema, setMapType methods.

n CallableStatement

Overloaded the registerOutParameter and setObject methods.

Clarified the getObject methods.

n Date

Added the methods toInstant, toLocalDate

Chapter 3 Summary of New Features 13

Overload the method valueOf

n DatabaseMetaData

Added the methods supportsRefCursor, getMaxLogicalLobSize.

Clarified the getIndexInfo method.

n Driver

Clarified the acceptsURL, and connect, methods

n DriverManager

Overload the registerDriver method.

Clarified the getConnection, deregisterDriver, and
registerDriver, methods.

n PreparedStatement

Added the method executeLargeUpdate.

Overload the method setObject.

n ResultSet

Overloaded the methods updateObject.

Clarified the getObject methods.

n Statement

Added the method executeLargeBatch, executeLargeUpdate.
getLargeUpdateCount, getLargeMaxRows, and setLargeMaxRows.

Clarified the setEscapeProcessing method.

n SQLInput

Added the readObject method.

n SQLOutput

Added the readObject method

n Time

Added the methods toInstant, toLocalTime

Overload the method valueOf

n Timestamp

Added the methods from, toInstant, toLocalTime

Overload the method valueOf.

n Types

Added the types REF_CURSOR, TIME_WITH_TIMEZONE, and
TIMESTAMP_WITH_TIEMZONE.

n SQLXML

14 JDBC 4.2 Specification • March 2014

Clarified the getSource and setResult methods.

n DataSource and XADataSource

Clarified that a no-arg constructor must be provided.

See Chapter 5 “Classes and Interfaces” for a list of the classes and interfaces affected
by these changes.

15

CHAPTER 4

Overview

The JDBC API provides a way for Java programs to access one or more sources of
data. In the majority of cases, the data source is a relational DBMS, and its data is
accessed using SQL. However, it is also possible for JDBC technology-enabled
drivers to be implemented on top of other data sources, including legacy file systems
and object-oriented systems. A primary motivation for the JDBC API is to provide a
standard API for applications to access a wide variety of data sources.

This chapter introduces some of the key concepts of the JDBC API. In addition, it
describes two common environments for JDBC applications, with a discussion of
how different functional roles are implemented in each one. The two-tier and three-
tier models are logical configurations that can be implemented on a variety of
physical configurations.

4.1 Establishing a Connection
The JDBC API defines the Connection interface to represent a connection to an
underlying data source.

In a typical scenario, a JDBC application will connect to a target data source using
one of two mechanisms:

n DriverManager — this fully implemented class was introduced in the original
JDBC 1.0 API. When an application first attempts to connect to a data source by
specifying a URL, DriverManager will automatically load any JDBC drivers
found within the CLASSPATH (any drivers that are pre-JDBC 4.0 must be
explicitly loaded by the application).

n DataSource — this interface was introduced in the JDBC 2.0 Optional Package
API. It is preferred over DriverManager because it allows details about the
underlying data source to be transparent to the application. A DataSource
object’s properties are set so that it represents a particular data source. When its
getConnection method is invoked, the DataSource instance will return a

16 JDBC 4.2 Specification • March 2014

connection to that data source. An application can be directed to a different data
source by simply changing the DataSource object’s properties; no change in
application code is needed. Likewise, a DataSource implementation can be
changed without changing the application code that uses it.

The JDBC API also defines two important extensions of the DataSource interface to
support enterprise applications. These extensions are the following two interfaces:

n ConnectionPoolDataSource — supports caching and reusing of physical
connections, which improves application performance and scalability

n XADataSource — provides connections that can participate in a distributed
transaction

4.2 Executing SQL Statements and
Manipulating Results
Once a connection has been established, an application using the JDBC API can
execute queries and updates against the target data source. The JDBC API provides
access to the most commonly implemented features of SQL:2003. Because different
vendors vary in their level of support for these features, the JDBC API includes the
DatabaseMetadata interface. Applications can use this interface to determine
whether a particular feature is supported by the data source they are using. The
JDBC API also defines escape syntax to allow an application to access non-standard
vendor-specific features. The use of escape syntax has the advantage of giving JDBC
applications access to the same feature set as native applications and at the same
time maintaining the portability of the application.

Applications use methods in the Connection interface to specify transaction
attributes and create Statement, PreparedStatement, or CallableStatement
objects. These statements are used to execute SQL statements and retrieve results.
The ResultSet interface encapsulates the results of an SQL query. Statements may
also be batched, allowing an application to submit multiple updates to a data source
as a single unit of execution.

The JDBC API extends the ResultSet interface with the RowSet interface, thereby
providing a container for tabular data that is much more versatile than a standard
result set. A RowSet object is a JavaBeansTM component, and it may operate without
being connected to its data source. For example, a RowSet implementation can be
serializable and therefore sent across a network, which is particularly useful for
small-footprint clients that want to operate on tabular data without incurring the
overhead of a JDBC driver and data source connection. Another feature of a RowSet
implementation is that it can include a custom reader for accessing any data in
tabular format, not just data in a relational database. Further, a RowSet object can

Chapter 4 Overview 17

update its rows while it is disconnected from its data source, and its implementation
can include a custom writer that writes those updates back to the underlying data
source.

4.2.1 Support for SQL Advanced Data Types

The JDBC API defines standard mappings to convert SQL data types to JDBC data
types and back. This includes support for SQL:2003 advanced data types such as
BLOB, CLOB, ARRAY, REF, STRUCT, XML, and DISTINCT. JDBC drivers may also
implement one or more customized type mappings for user-defined types (UDTs), in
which the UDT is mapped to a class in the Java programming language. The JDBC
API also provides support for externally managed data, for example, data in a file
outside the data source.

4.3 Two-tier Model
A two-tier model divides functionality into a client layer and a server layer, as
shown in FIGURE 4-1.

FIGURE 4-1 Two-tier Model

The client layer includes the application(s) and one or more JDBC drivers, with the
application handling these areas of responsibility:

Application

data source

JDBC Driver

18 JDBC 4.2 Specification • March 2014

n presentation logic

n business logic

n transaction management for multiple-statement transactions or distributed
transactions

n resource management

In this model, the application interacts directly with the JDBC driver(s), including
establishing and managing the physical connection(s) and dealing with the details of
specific underlying data source implementations. The application may use its
knowledge of a specific implementation to take advantage of nonstandard features
or do performance tuning.

Some drawbacks of this model include:

n mingling presentation and business logic with infrastructure and system-level
functions. This presents an obstacle to producing maintainable code with a well-
defined architecture.

n making applications less portable because they are tuned to a particular database
implementation. Applications that require connections to multiple databases must
be aware of the differences between the different vendors’ implementations.

n limiting scalability. Typically, the application will hold onto one or more physical
database connections until it terminates, limiting the number of concurrent
applications that can be supported. In this model, issues of performance,
scalability and availability are handled by the JDBC driver and the corresponding
underlying data source. If an application deals with multiple drivers, it may also
need to be aware of the different ways in which each driver/data source pair
resolves these issues.

4.4 Three-tier Model
The three-tier model introduces a middle-tier server to house business logic and
infrastructure, as shown in FIGURE 4-2.

Chapter 4 Overview 19

FIGURE 4-2 Three-tier Model

This architecture is designed to provide improved performance, scalability and
availability for enterprise applications. Functionality is divided among the tiers as
follows:

1. Client tier — a thin layer implementing presentation logic for human interaction.
Java programs, web browsers and PDAs are typical client-tier implementations.
The client interacts with the middle-tier application and does not need to include
any knowledge of infrastructure or underlying data source functions.

2. Middle-tier server — a middle tier that includes:

n Applications to interact with the client and implement business logic. If the
application includes interaction with a data source, it will deal with higher-
level abstractions, such as DataSource objects and logical connections rather
than lower-level driver API.

data source

Web Client

(Browser) Application

Server

transaction

manager

JDBC

Driver

JDBC

Driver
data source

Middle-tier Server

Application Application

20 JDBC 4.2 Specification • March 2014

n An application server to provide supporting infrastructure for a wide range of
applications. This can include management and pooling of physical
connections, transaction management, and the masking of differences between
different JDBC drivers. This last point makes it easier to write portable
applications. The application server role can be implemented by a Java EE
server. Application servers implement the higher-level abstractions used by
applications and interact directly with JDBC drivers.

n JDBC driver(s) to provide connectivity to the underlying data sources. Each
driver implements the standard JDBC API on top of whatever features are
supported by its underlying data source. The driver layer may mask
differences between standard SQL:2003 syntax and the native dialect
supported by the data source. If the data source is not a relational DBMS, the
driver implements the relational layer used by the application server.

3. Underlying data source — the tier where the data resides. It can include relational
DBMSs, legacy file systems, object-oriented DBMSs, data warehouses,
spreadsheets, or other means of packaging and presenting data. The only
requirement is a corresponding driver that supports the JDBC API.

4.5 JDBC in the Java EE Platform
Java EE components, such as JavaServerTM Pages, Servlets, and Enterprise Java
BeansTM (EJBTM) components, often require access to relational data and use the
JDBC API for this access. When Java EE components use the JDBC API, the container
manages their transactions and data sources. This means that Java EE component
developers do not directly use the JDBC API’s transaction and datasource
management facilities. See the Java EE Platform Specification for further details.

21

CHAPTER 5

Classes and Interfaces

The following classes and interfaces make up the JDBC API.

5.1 The java.sql Package
The core JDBC API is contained in the package java.sql. The enums, classes and
interfaces in java.sql are listed below. Enums and classes are bold type; interfaces
are in standard type.

java.sql.Array

java.sql.BatchUpdateException

java.sql.Blob

java.sql.CallableStatement

java.sql.Clob

java.sql.ClientinfoStatus

java.sql.Connection

java.sql.DataTruncation

java.sql.DatabaseMetaData

java.sql.Date

java.sql.Driver

java.sql.DriverAction

java.sql.DriverManager

java.sql.DriverPropertyInfo

java.sql.JDBCType

java.sql.NClob

22 JDBC 4.2 Specification • March 2014

java.sql.ParameterMetaData

java.sql.PreparedStatement

java.sql.PseudoColumnUsage

java.sql.Ref

java.sql.ResultSet

java.sql.ResultSetMetaData

java.sql.RowId

java.sql.RowIdLifeTime

java.sql.Savepoint

java.sql.SQLClientInfoException

java.sql.SQLData

java.sql.SQLDataException

java.sql.SQLException

java.sql.SQLFeatureNotSupportedException

java.sql.SQLInput

java.sql.SQLIntegrityConstraintViolationException

java.sql.SQLInvalidAuthorizationSpecException

java.sql.SQLNonTransientConnectionException

java.sql.SQLNonTransientException

java.sql.SQLOutput

java.sql.SQLPermission

java.sql.SQLSyntaxErrorException

java.sql.SQLTimeoutException

java.sql.SQLTransactionRollbackException

java.sql.SQLTransientConnectionException

java.sql.SQLTransientException

java.sql.SQLType

java.sql.SQLXML

java.sql.SQLWarning

java.sql.Statement

java.sql.Struct

java.sql.Time

java.sql.Timestamp

java.sql.Types

java.sql.Wrapper

Chapter 5 Classes and Interfaces 23

The following classes and interfaces are either new or updated in the JDBC 4.2 API.
New classes and interfaces are highlighted in bold.

java.sql.BatchUpdateException

java.sql.CallableStatement

java.sql.Connection

java.sql.DatabaseMetaData

java.sql.Date

java.sql.Driver

java.sql.DriverAction

java.sql.DriverManager

java.sql.JDBCType

java.sql.Permission

java.sql.PreparedStatement

java.sql.ResultSet

java.sql.SQLInput

java.sql.SQLOutput

java.sql.SQLType

java.sql.SQLXML

java.sql.Statement

java.sql.Types

java.sql.Timestamp

javax.sql.XADataSource

FIGURE 5-1 shows the interactions and relationships between the key classes and
interfaces in the java.sql package. The methods involved in creating statements,
setting parameters and retrieving results are also shown.

24 JDBC 4.2 Specification • March 2014

FIGURE 5-1 Relationships between major classes and interface in the java.sql package

Connection

Statement

Data types

CallableStatement

ResultSet

PreparedStatement

subclasses
p

rep
areS

tatem
en

t

p
rep

areC
all

cr
ea

te
S

ta
te

m
en

t

executeQuery

ex
ec

u
te

Q
u

er
y

execu
teQ

u
ery

Input to

getXXX

Input/Output of

ge
tM

o
re

R
es

u
lt

s
/ g

et
R

es
u

lt
S

et

subclasses

PreparedStatement
CallableStatement

Chapter 5 Classes and Interfaces 25

5.2 The javax.sql Package
The following list contains the classes and interfaces that are contained in the
javax.sql package. Classes are highlighted in bold; interfaces are in normal type.

javax.sql.CommonDataSource

javax.sql.ConnectionEvent

javax.sql.ConnectionEventListener

javax.sql.ConnectionPoolDataSource

javax.sql.DataSource

javax.sql.PooledConnection

javax.sql.RowSet

javax.sql.RowSetEvent

javax.sql.RowSetInternal

javax.sql.RowSetListener

javax.sql.RowSetMetaData

javax.sql.RowSetReader

javax.sql.RowSetWriter

javax.sql.StatementEvent

javax.sql.StatementEventListener

javax.sql.XAConnection

javax.sql.XADataSource

Note – The classes and interfaces in the javax.sql package were first made
available as the JDBC 2.0 Optional Package. This optional package was previously
separate from the java.sql package, which was part of J2SE 1.2. Both packages
(java.sql and javax.sql) are now part of Java SE as of J2SE 1.4.

FIGURE 5-2, FIGURE 5-3, FIGURE 5-4, and FIGURE 5-5 show the relationships between key
classes and interfaces in these areas of functionality: DataSource objects,
connection pooling, distributed transactions, and rowsets.

26 JDBC 4.2 Specification • March 2014

FIGURE 5-2 Relationship between javax.sql.DataSource and
java.sql.Connection

FIGURE 5-3 Relationships involved in connection pooling

DataSource Connection

java.sqljavax.sql

getConnection

Connection PooledConnection

javax.sqljava.sql

getConnection

ConnectionPoolDataSource

getConnection

ConnectionEvent

ConnectionEventListener

close or error event

Chapter 5 Classes and Interfaces 27

FIGURE 5-4 Relationships involved in distributed transaction support

XAConnection

PooledConnection

ConnectionEvent

XAResource

ConnectionEventListener

XADataSource

Connection

java.sqljavax.sqljavax.transaction.xa

getConnection

getXAConnection

getXAResource

subclasses

close or error event

28 JDBC 4.2 Specification • March 2014

FIGURE 5-5 RowSet relationships

RowSet

ResultSet

RowSetEvent

RowSetReader

RowSetEventListener

RowSetMetaData RowSetWriter

javax.sqljava.sql

subclasses

RowSetInternal

ResultSetMetaData

subclasses

retrieves

metadata reads data writes data

29

CHAPTER 6

Compliance

This chapter identifies the features that a JDBC driver implementation is required to
support to claim compliance. Any features not identified are considered optional for
compliance.

6.1 Definitions
To avoid ambiguity, we will use these terms in our discussion of compliance:

n JDBC driver implementation — a JDBC technology-enabled driver and its
underlying data source. The driver may provide support for features that are not
implemented by the underlying data source. It may also provide the mapping
between standard syntax/semantics and the native API implemented by the data
source.

n Relevant specifications — this document, the API specification, and the relevant
SQL specification. This is also the order of precedence if a feature is described in
more than one of these documents. For the JDBC API, it is SQL92 plus the
relevant sections of SQL:2003 and X/Open SQL CLI.

n Supported feature — a feature for which the JDBC API implementation supports
standard syntax and semantics for that feature as defined in the relevant
specifications.

n Partially Supported Feature—A feature for which some methods are
implemented via standard syntax and semantics and some required methods
throw SQLFeatureNotSupportedException to indicate that it is not
supported.

n Extension — a feature that is not covered by any of the relevant specifications or
a non-standard implementation of a feature that is covered.

n Fully implemented — a term applied to an interface that has all of its methods
implemented to support the semantics defined in the relevant specifications.
None of the methods may throw an exception because they are not implemented.

30 JDBC 4.2 Specification • March 2014

n Must implement — an interface that must be implemented although some
methods on the interface are considered optional. Methods that are not
implemented must throw an SQLFeatureNotSupportedException to indicate
that the corresponding feature is not supported.

6.2 Guidelines and Requirements
The following guidelines apply to JDBC compliance:

n A JDBC API implementation must support Entry Level SQL92 plus the SQL
command Drop Table (see note.)

Entry Level SQL92 represents a "floor" for the level of SQL that a JDBC API
implementation must support. Access to features based on SQL99 or SQL:2003
should be provided in a way that is compatible with the relevant part of the
SQL99 or SQL:2003 specification.

n Drivers must support escape syntax. Escape syntax is described in Chapter 13
“Statements”.

n Drivers must support transactions. See Chapter 10 “Transactions” for details.

n If a DatabaseMetaData method indicates that a given feature is supported, it
must be supported via standard syntax and semantics as described in the relevant
specifications and meet the requirements outlined in “JDBC 4.2 API Compliance”
on page 31. This may require the driver to provide the mapping to the data
source’s native API or SQL dialect if it differs from the standard.

If a feature is supported, all of the relevant metadata methods must be
implemented. For example, if a JDBC API implementation supports the RowSet
interface, it must also implement the RowSetMetaData interface.

n Drivers should provide access to every feature implemented by the underlying
data source, including features that extend the JDBC API. The intent is for
applications using the JDBC API to have access to the same feature set as native
applications.

n If a JDBC driver does not support or only provides partial support for an optional
feature, the corresponding DatabaseMetaData method must indicate the feature
is not supported. Any methods for a feature that is not implemented are required
to throw a SQLFeatureNotSupportedException.

Chapter 6 Compliance 31

Note – A JDBC API implementation is required to support the DROP TABLE
command as specified by SQL92, Transitional Level. However, support for the
CASCADE and RESTRICT options of DROP TABLE is optional. In addition, the
behavior of DROP TABLE is implementation-defined when there are views or
integrity constraints defined that reference the table being dropped.

6.3 JDBC 4.2 API Compliance
A driver that is compliant with the JDBC specification must do the following:

n Adhere to the preceding guidelines and requirements

n Support auto loading of the drivers java.sql.Driver implementation

n Support a ResultSet type of TYPE_FORWARD_ONLY

n Support a ResultSet concurrency of CONCUR_READ_ONLY

n Support batch updates

n Fully implement the following interfaces:

n java.sql.DatabaseMetaData

n java.sql.ParameterMetaData

n java.sql.ResultSetMetaData

n java.sql.Wrapper

n It must implement the DataSource interface with the exception of the following
optional methods:

n getParentLogger

n It must implement the Driver interface with the exception of the following
optional methods:

n getParentLogger

n It must implement the Connection interface with the exception of the following
optional methods:

n createArrayOf unless the driver supports the associated data type

n createBlob unless the driver supports the associated data type

n createClob unless the driver supports the associated data type

n createNClob unless the driver supports the associated data type

n createSQLXML unless the driver supports the associated data type

n createStruct unless the driver supports the associated data type

n getNetworkTimeout

32 JDBC 4.2 Specification • March 2014

n getTypeMap unless the driver supports the associated data type

n setTypeMap unless the driver supports the associated data type

n prepareStatement(String sql,

Statement.RETURN_GENERATED_KEYS)

n prepareStatement(String sql, int[] columnIndexes)

n prepareStatement(String sql, String[] columnNames)

n setSavePoint

n rollback(java.sql.SavePoint savepoint)

n releaseSavePoint

n setNetworkTimeout

n It must implement the Statement interface with the exception of the following
optional methods:

n cancel

n execute(String sql, Statement.RETURN_GENERATED_KEYS)

n execute(String sql, int[] columnIndexes)

n execute(String sql, String[] columnNames)

n executeUpdate(String sql, Statement.RETURN_GENERATED_KEYS)

n executeUpdate(String sql, int[] columnIndexes)

n executeUpdate(String sql, String[] columnNames)

n getGeneratedKeys

n getMoreResults(Statement.KEEP_CURRENT_RESULT) unless
DatabasemetaData.supportsMultipleOpenResults() returns true.

n getMoreResults(Statement.CLOSE_ALL_RESULTS) unless
DatabasemetaData.supportsMultipleOpenResults() returns true.

n setCursorName

n It must implement the PreparedStatement interface with the exception of the
following optional methods:

n getMetaData

n setArray, setBlob, setClob, setNClob, setNCharacterStream,
setNString, setRef, setRowId, setSQLXML and setURL unless the driver
supports the associated data type

n setNull(int parameterIndex,int sqlType, String typeName)

unless the driver supports the associated data type

n setUnicodeStream

n setAsciiStream, setBinaryStream, setCharacterStream,

setNCharacterStream which do not take a length parameter

Chapter 6 Compliance 33

n It must implement the CallableStatement interface if the method
DatabaseMetaData.supportsStoredProcedures() returns true with the
exception of the following optional methods:

n All setXXX, getXXX and registerOutputParameter methods which
support named parameters

n getArray, getBlob, getClob, getNClob, getNCharacterStream,
getNString, getRef, getRowId, getSQLXML and getURL unless the driver
supports the associated data type

n getBigDecimal(int parameterIndex,int scale)

n getObject(int i, Class<T> type)

n getObject(String colName, Class<T> type)

n getObject(int parameterIndex,

java.util.Map<java.lang.String,java.lang.Class<?>> map)

unless the driver supports the associated data type

n registerOutputParam(String parameterName,int sqlType,

String typeName) unless the driver supports the associated data type

n setNull(String parameterName,int sqlType, String typeName)

unless the driver supports the associated data type

n setAsciiStream, setBinaryStream, setCharacterStream,

setNCharacterStream which do not take a length parameter

n It must implement the ResultSet interface with the exception of the following
optional methods:

n All updateXXX methods

n absolute

n afterLast

n beforeFirst

n cancelRowUpdates

n deleteRow

n first

n getArray, getBlob, getClob, getNClob, getNCharacterStream,
getNString, getRef, getRowId, getSQLXML and getURL unless the driver
supports the associated data type

n getBigDecimal(int i,int scale)

n getBigDecimal(String colName,int scale)

n getCursorName

n getObject(int i, Class<T> type)

n getObject(String colName, Class<T> type)

n getObject(int i, Map<String,Class<?>> map) unless the driver
supports the associated data type

34 JDBC 4.2 Specification • March 2014

n getObject(String colName, Map<String,Class<?>> map) unless
the driver supports the associated data type

n getRow

n getUnicodeStream

n insertRow

n isAfterLast

n isBeforeFirst

n isFirst

n isLast

n last

n moveToCurrentRow

n moveToInsertRow

n previous

n refreshRow

n relative

n rowDeleted

n rowInserted

n rowUpdated

n updateRow

n if a JDBC driver supports a ResultSet concurrency of CONCUR_UPDATABLE,
the following ResultSet interface methods must be implemented:

n All updateXXX methods except for updateArray, updateBlob,
updateClob, updateNClob, updateNCharacterstream, updateNString,
updateRef, updateRowId, updateSQLXML and updateURL unless the
driver supports the associated data type and the updateBlob, updateClob,
updateNClob, updateAsciiStream, updateBinaryStream,
updateCharacterStream and updateNCharacterstream methods
which take a length parameter

n cancelRowUpdates

n deleteRow

n rowDeleted

n rowUpdated

n updateRow

n if a JDBC driver supports a ResultSet type of TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE, the following ResultSet interface methods
must be implemented:

n absolute

n afterLast

Chapter 6 Compliance 35

n beforeFirst

n first

n isAfterLast

n isBeforeFirst

n isFirst

n isLast

n last

n previous

n relative

n If an optional interface is implemented, then all methods on the interface must
also be fully implemented with the following exception:

n java.sql.SQLInput and java.sql.SQLOutput are not required to
implement the methods for the Array, Blob, Clob, NClob, NString, Ref,
RowId, SQLXML and URL data types unless the driver supports the associated
data type.

6.4 Java EE JDBC Compliance
Drivers supporting the JDBC API in a Java EE environment must meet the JDBC 4.2
API Compliance requirements and must meet the following additional requirements
in their implementation of JDBC APIs, as described below:

n Drivers must support stored procedures. The DatabaseMetaData method
supportsStoredProcedures must return true. The driver must also support
the full JDBC API escape syntax for calling stored procedures with the following
methods on the Statement, PreparedStatement, and CallableStatement
classes:

n executeUpdate

n executeQuery

n execute

Support for calling stored procedures using the execute method on the
Statement, PreparedStatement, and CallableStatement interfaces only
requires that a SQL statement being executed returns either an update count or a
single ResultSet object. This is due to the fact that some databases don’t support
returning more than a single ResultSet from a stored procedure. .

All parameter types (IN, OUT, and INOUT) must be supported.

n A driver must support the Statement escape syntax for the following functions:

36 JDBC 4.2 Specification • March 2014

n ABS

n CONCAT

n LCASE

n LENGTH

n LOCATE (two argument version only)

n LTRIM

n MOD

n RTRIM

n SQRT

n SUBSTRING

n UCASE

37

CHAPTER 7

Database Metadata

The DatabaseMetaData interface is implemented by JDBC drivers to provide
information about their underlying data sources. It is used primarily by application
servers and tools to determine how to interact with a given data source.
Applications may also use DatabaseMetaData methods to get information about a
data source, but this is less typical.

The DatabaseMetaData interface includes over 150 methods, which can be
categorized according to the types of information they provide:

n general information about the data source

n whether or not the data source supports a given feature or capability

n data source limits

n what SQL objects the data source contains and attributes of those objects

n transaction support offered by the data source

The DatabaseMetaData interface also contains over 40 fields, which are constants
used as return values for various DatabaseMetaData methods.

This chapter presents an overview of the DatabaseMetaData interface, gives
examples to illustrate the categories of metadata methods, and introduces some new
methods. For a comprehensive listing, however, the reader should consult the JDBC
API specification.

Note – JDBC also defines the ResultSetMetaData interface, which is discussed in
Chapter 15 “Result Sets”.

38 JDBC 4.2 Specification • March 2014

7.1 Creating a DatabaseMetadata Object
A DatabaseMetaData object is created with the Connection method
getMetaData. Once created, it can be used to dynamically discover information
about the underlying data source. CODE EXAMPLE 7-1 creates a DatabaseMetadata
object and uses it to determine the maximum number of characters allowed for a
table name.

// con is a Connection object

DatabaseMetaData dbmd = con.getMetadata();

int maxLen = dbmd.getMaxTableNameLength();

CODE EXAMPLE 7-1 Creating and using a DatabaseMetadata object

7.2 Retrieving General Information
Some DatabaseMetaData methods are used to dynamically discover general
information about a data source as well as some details about its implementation.
Some of the methods in this category are:

n getURL

n getUserName

n getDatabaseProductVersion, getDriverMajorVersion and

getDriverMinorVersion

n getSchemaTerm, getCatalogTerm and getProcedureTerm

n nullsAreSortedHigh and nullsAreSortedLow

n usesLocalFiles and usesLocalFilePerTable

n getSQLKeywords

Chapter 7 Database Metadata 39

7.3 Determining Feature Support
A large group of DatabaseMetaData methods can be used to determine whether a
given feature or set of features is supported by the driver or underlying data source.
Beyond this, some of the methods describe what level of support is provided. Some
of the methods that describe support for individual features are:

n supportsAlterTableWithDropColumn

n supportsBatchUpdates

n supportsTableCorrelationNames

n supportsPositionedDelete

n supportsFullOuterJoins

n supportsStoredProcedures

n supportsMixedCaseQuotedIdentifiers

Methods to describe a level of feature support include:

n supportsANSI92EntryLevelSQL

n supportsCoreSQLGrammar

7.4 Data Source Limits
Another group of methods provides the limits imposed by a given data source.
Some of the methods in this category are:

n getMaxRowSize

n getMaxStatementLength

n getMaxTablesInSelect

n getMaxConnections

n getMaxCharLiteralLength

n getMaxColumnsInTable

Methods in this group return the limit as an int. A return value of zero means that
there is no limit or the limit is unknown.

40 JDBC 4.2 Specification • March 2014

7.5 SQL Objects and Their Attributes
Some DatabaseMetaData methods provide information about the SQL objects that
populate a given data source. This group also includes methods to determine the
attributes of those objects. Methods in this group return ResultSet objects in
which each row describes a particular object. For example, the method getUDTs
returns a ResultSet object in which there is a row for each UDT that has been
defined in the data source. Examples of this category are:

n getSchemas

n getCatalogs

n getTables

n getPrimaryKeys

n getProcedures

n getProcedureColumns

n getUDTs

n getFunctions

n getFunctionColumns

The ResultSet objects that are returned from a DatabaseMetaData method have
a sensitivity of TYPE_FORWARD_ONLY and a concurrency of CONCUR_READ_ONLY.
ResultSet.getHoldability can be called to determine the holdability of the
returned ResultSet object as the default holdability is implementation defined.

Additional columns beyond the columns defined to be returned by the ResultSet
object for a given method can be defined by the JDBC driver vendor and must be
accessed by their column label. This allows for future JDBC specifications to be able
to add additional columns if needed to existing DatabaseMetaData methods
without an significant impact to existing applications

7.6 Transaction Support
A small group of methods provides information about the transaction semantics
supported by the data source. Examples of this category include:

n supportsMultipleTransactions

n getDefaultTransactionIsolation

Chapter 7 Database Metadata 41

7.7 New Methods
The JDBC 4.2 API introduces the following new DatabaseMetaData methods:

n supportsRefCursors — Method used to indicate whether a generated key
will always be returned if the column name(s) or index(es) specified for the auto
generated key column(s) are valid and the statement succeeds.

n getMaxLogicalLobSize — Retrieves a description of the pseudo or hidden
columns available in a given table within the specified catalog and schema.

A complete definition of these methods may be found in the JDBC API specification
(javadoc).

7.8 Modified Methods
The JDBC 4.2 API modifies the definitions of these existing DatabaseMetaData
methods:

n getIndexInfo — The returned CARDINALITY and PAGES columns now return
a long value.

The JDBC 4.2 API specification includes updated definitions of these methods.

42 JDBC 4.2 Specification • March 2014

43

CHAPTER 8

Exceptions

The SQLException class and its subtypes provide information about errors and
warnings that occur while a data source is being accessed.

8.1 SQLException

An instance of SQLException is thrown when an error occurs during an interaction
with a data source. The exception contains the following information:

n a textual description of the error. The String containing the description can be
retrieved by calling the method SQLException.getMessage.

n a SQLState. The String containing the SQLState can be retrieved by calling the
method SQLException.getSQLState.

The value of the SQLState string will depend on the underlying data source
setting the value. Both X/Open and SQL:2003 define SQLState values and the
conditions in which they should be set. Although the sets of values overlap,
the values defined by SQL:2003 are not a superset of X/Open.

The DatabaseMetaData method getSQLStateType allows an application to
determine if the SQLStates being returned by a data source are X/Open or
SQL:2003.

n an error code. This is an integer value identifying the error that caused the
SQLException to be thrown. Its value and meaning are implementation specific
and may be the actual error code returned by the underlying data source. The
error code can be retrieved using the SQLException.getErrorCode method.

n a cause. This is another Throwable which caused this SQLException to occur.

44 JDBC 4.2 Specification • March 2014

n a reference to any "chained" exceptions. If more than one error occurs the
exceptions are referenced via this chain. All chained exception can be recursively
retrieved by calling the SQLException.getNextException method on the
exception that was thrown. If no more exceptions are chained, the
getNextException method returns null.

There are multiple subclasses that extend SQLException which are described in
Section 8.5 “Categorized SQLExceptions” on page 8-48.

8.1.1 Support for the Java SE Chained Execeptions

The SQLException class and its subclasses have been enhanced to provide support
for the Java SE chained exception facility, also known as the cause facility. The
changes to support this functionality are:

n The addition of four Constructors in order to provide support for the cause
parameter.

n Added support to the SQLException class to support the enchanced For-Each
Loop, introduced in J2SE 5.0, allowing the navigation of SQLExceptions and
their cause relationship without having to call getCause after each invocation of
getNextException.

n The getCause method may return Non-SQLExceptions in addition to
SQLExceptions

Please refer to the JDBC API specification for additional information.

8.1.2 Navigating SQLExceptions

It is possible that during the execution of a SQL statement that one or more
Exceptions could occur, each with their own potential causal relationship. This
means that when a JDBC application catches a SQLException, there is a possibility
that there may be additional SQLExceptions chained to the original thrown
SQLException. To access the additional chained SQLExceptions, an application
would recursively invoke getNextException until a null value is returned.

A SQLException may have a causal relationship, which consists of one or more
Throwables which caused the SQLException to be thrown. You may recursively
call the method SQLException.getCause, until a null value is returned, to
navigate the chain of causes.

The following code demonstrates how an application could navigate SQLExceptions
and their causes.

Chapter 8 Exceptions 45

catch(SQLException ex) {

 while(ex != null) {

 System.out.println("SQLState:" + ex.getSQLState());

 System.out.println("Error Code:" + ex.getErrorCode());

 System.out.println("Message:" + ex.getMessage());

 Throwable t = ex.getCause();

 while(t != null) {

 System.out.println("Cause:" + t);

 t = t.getCause();

 }

 ex = ex.getNextException();

 }

}

CODE EXAMPLE 8-1 Navigating SQLException and causes

8.1.2.1 Using a For-Each Loop with SQLExceptions

JDBC applications may use the Java SE For-Each Loop enhancement to navigate the
SQLExceptions and their causal relationship.

The following code demonstrates how to use the For-Each Loop with
SQLExceptions.

catch(SQLException ex) {

 for(Throwable e : ex) {

 System.out.println("Error encountered: " + e);

 }

}

CODE EXAMPLE 8-2 Using SQLExceptions with a For-Each Loop

46 JDBC 4.2 Specification • March 2014

8.2 SQLWarning

SQLWarning is a subclass of SQLException. The methods in the following
interfaces will generate an SQLWarning object if they encounter a database access
warning:

n Connection

n DataSet

n Statement

n ResultSet

When a method generates an SQLWarning object, the caller is not informed that a
data access warning has occurred. The method getWarnings must be called on the
appropriate object to retrieve the SQLWarning object. However, the
DataTruncation sub-class of SQLWarning may be thrown in some circumstances,
see Section 8.3 “DataTruncation” on page 8-46 for more details.

If multiple data access warnings occur, they are chained to the first one and can be
retrieved by recursively calling the SQLWarning.getNextWarning method. If
there are no more warnings in the chain, getNextWarning returns null.

Subsequent SQLWarning objects continue to be added to the chain until the next
statement is executed or, in the case of a ResultSet object, when the cursor is re-
positioned, at which point all SQLWarning objects in the chain are removed.

8.3 DataTruncation

The DataTruncation class, a sub-class of SQLWarning, provides information
when data is truncated. When data truncation occurs on a write to the data source, a
DataTruncation object is thrown. The data value that has been truncated may
have been written to the data source even if a warning has been generated. When
data truncation occurs on a read from the data source, a SQLWarning is reported.

A DataTruncation object contains the following information:

n the descriptive String "Data truncation"

n the SQLState "01004" when data truncation occurs on a read from the data source

n the SQLState "22001" when data truncation occurs on a write to the data source

n a boolean to indicate whether a column value or a parameter was truncated. The
method DataTruncation.getParameter returns true if a parameter was
truncated and false if a column value was truncated.

Chapter 8 Exceptions 47

n an int giving the index of the column or parameter that was truncated. If the
index of the column or parameter is unknown, the method
DataTruncation.getIndex returns -1. If the index is unknown, the values
returned by the methods DataTruncation.getParameter and
DataTruncation.getRead are undefined.

n a boolean to indicate whether the truncation occurred on a read or a write
operation. The method DataTruncation.getRead returns true if the
truncation occurred on a read and false if the truncation occurred on a write.

n The method DataTruncation.getDataSize returns an int, representing the
number of bytes of data that should have been transferred. This number may be
approximate if data conversions were being performed. The value may be -1 if the
size is unknown.

n an int indicating the actual number of bytes that were transferred. The method
DataTruncation.getTransferSize returns the number of bytes actually
transferred or -1 if the number of bytes is unknown.

8.3.1 Silent Truncation

The Statement.setMaxFieldSize method allows a maximum size (in bytes) to
be set. This limit applies only to the BINARY, VARBINARY, LONGVARBINARY, CHAR,
VARCHAR, LONGVARCHAR, NCHAR, NVARCHAR, and LONGNVARCHAR data types.

If a limit has been set using setMaxFieldSize and there is an attempt to read data
that exceeds the limit, any truncation that occurs as a result of exceeding the set limit
will not be reported.

8.4 BatchUpdateException

A BatchUpdateException object provides information about errors that occur
while a batch of statements is being executed. This exception’s behavior is described
in Chapter 14 “Batch Updates”.

48 JDBC 4.2 Specification • March 2014

8.5 Categorized SQLExceptions

Categorized SQLExceptions provide a standard mapping to common SQLStates
class values and to common error states which are not associated with a specific
SQLState class value. The SQLState class values are defined in the SQL:2003
specification. A JDBC driver may also throw a Categorized SQLException for JDBC
driver detected errors. The new SQLException subclasses will provide a means for
JDBC programmers to write more portable error-handling code.

The new SQLExceptions will be broken into three exception categories:

n SQLNonTransientException

n SQLTransientException

n SQLRecoverableException

8.5.1 NonTransient SQLExceptions

A NonTransient SQLException must extend the class
SQLNonTransientException. A NonTransient SQLException would be thrown
in instances where a retry of the same operation would fail unless the cause of the
SQLException is corrected. After a NonTransient SQLException other than
SQLNonTransientConnectionException occurs, the application can assume
that the connection is still valid. For SQLState class values that indicate non-transient
errors but which are not specified in the following table, an implementation may
throw an instance of the class SQLNonTransientException.

TABLE 8-1 specifies which NonTransientSQLException subclass must be thrown
for a a given SQLState class value:

TABLE 8-1 NonTransientSQLExeceptions Subclasses

SQL State Class SQLNonTransientException Subclass

0A SQLFeatureNotSupportedException

08 SQLNonTransientConnectionException

22 SQLDataException

23 SQLIntegrityConstraintViolationException

28 SQLInvalidAuthorizationException

Chapter 8 Exceptions 49

A JDBC driver implementation may also throw a NonTransientSQLException
for vendor specific non-transient coditions that are not specified in TABLE 8-1.

Note – A SQLSyntaxException will also occur when the accessibility of schema
objects is violated, for example, based on the rules given in the SQL:2003
specification.

8.5.2 Transient SQLExceptions

A Transient SQLException must extend the class SQLTransientException. A
Transient SQLException will be thrown in situations where a previously failed
operation might be able to succeed when the operation is retried without any
intervention by application-level functionality. After a Transient SQLException
other than SQLTransientConnectionException occurs, the application can
assume that the connection is still valid. For SQLState class values that indicate a
transient error but which are not specified in the following table, an implementation
may throw an instance of the class SQLTransientException.

TABLE 8-2 specifies which SQLTransientException subclass must be thrown for a
a given SQLState code:

A JDBC driver implementation may also throw a TransientSQLException for
vendor specific transient coditions that are not specified in TABLE 8-2.

42 SQLSyntaxErrorException

TABLE 8-2 TransientSQLExeceptions Subclasses

SQL State Class SQLTransientException Subclass

08 SQLTransientConnectionException

40 SQLTransactionRollbackException

N/A SQLTimeoutException

TABLE 8-1 NonTransientSQLExeceptions Subclasses

SQL State Class SQLNonTransientException Subclass

50 JDBC 4.2 Specification • March 2014

8.5.3 SQLRecoverableException

A SQLRecoverableException would be thrown in situations where the failed
operation might succeed if the application performs some recovery steps and retries
the entire transaction or in the case of a distributed transaction, the transaction
branch. At a minimum, recovery includes closing the current connection and getting
a new one. After a SQLRecoverableException the application must assume that
the connection is no longer valid.

8.6 SQLClientinfoException

A SQLClientInfoException is thrown by the Connection.setClientInfo
method when a failure occurs setting one or more of the specified client properties.
The SQLClientInfoException contains information indicating which client info
properties were not set.

51

CHAPTER 9

Connections

A Connection object represents a connection to a data source via a JDBC
technology-enabled driver. The data source can be a DBMS, a legacy file system, or
some other source of data with a corresponding JDBC driver. A single application
using the JDBC API may maintain multiple connections. These connections may
access multiple data sources, or they may all access a single data source.

From the JDBC driver perspective, a Connection object represents a client session.
It has associated state information such as user ID, a set of SQL statements and
result sets being used in that session, and what transaction semantics are in effect.

To obtain a connection, the application may interact with either:

n the DriverManager class working with one or more Driver implementations

OR

n a DataSource implementation

Using a DataSource object is the preferred method because it enhances application
portability, it makes code maintenance easier, and it makes it possible for an
application to transparently make use of connection pooling and distributed
transactions. All Java EE components that establish a connection to a data source use
a DataSource object to get a connection.

This chapter describes the various types of JDBC drivers and the use of the Driver
interface, the DriverManager class, and the basic DataSource interface.
DataSource implementations that support connection pooling and distributed
transactions are discussed in Chapter 11 “Connection Pooling” and Chapter 12
“Distributed Transactions”.

52 JDBC 4.2 Specification • March 2014

9.1 Types of Drivers
There are many possible implementations of JDBC drivers. These implementations
are categorized as follows:

n Type 1 — drivers that implement the JDBC API as a mapping to another data
access API, such as ODBC. Drivers of this type are generally dependent on a
native library, which limits their portability. The JDBC-ODBC Bridge driver is an
example of a Type 1 driver.

n Type 2 — drivers that are written partly in the Java programming language and
partly in native code. These drivers use a native client library specific to the data
source to which they connect. Again, because of the native code, their portability
is limited.

n Type 3 — drivers that use a pure Java client and communicate with a middleware
server using a database-independent protocol. The middleware server then
communicates the client’s requests to the data source.

n Type 4 — drivers that are pure Java often using a network protocol or File I/O to
communicate with a specific data source. The client connects directly to the data
source.

9.2 The Driver Interface
JDBC drivers must implement the Driver interface, and the implementation must
contain a static initializer that will be called when the driver is loaded. This
initializer registers a new instance of itself with the DriverManager, as shown in
CODE EXAMPLE 9-1.

public class AcmeJdbcDriver implements java.sql.Driver {

static {

java.sql.DriverManager.registerDriver(new

AcmeJdbcDriver());

}

...

}

CODE EXAMPLE 9-1 Example static initializer for a driver implementing
java.sql.Driver

When a Driver implementation is loaded, the static initializer will automatically
register an instance of the driver.

Chapter 9 Connections 53

To insure that drivers can be loaded using this mechanism, drivers are required to
provide a no-argument constructor.

The DriverManager class invokes Driver methods when it wishes to interact with
a registered driver. The Driver interface also includes the method acceptsURL.
The DriverManager can use this method to determine which of its registered
drivers it should use for a given URL.

When the DriverManager is trying to establish a connection, it calls that driver’s
connect method and passes the driver the URL. If the Driver implementation
understands the URL, it will return a Connection object or throw a SQLException
if a connection cannot be maded to the database. If the Driver implementation does
not understand the URL, it will return null.

9.2.1 Loading a driver that implements java.sql.Driver

As part of its initialization, the DriverManager class will attempt to load any JDBC
drivers classes referenced in the "jdbc.drivers" system property.

java -Djdbc.drivers=com.acme.jdbc.AcmeJdbcDriver Test

CODE EXAMPLE 9-2 Loading a driver using the jdbc.drivers system property

The DriverManager.getConnection method has been enhanced to support the
Java Standard Edition Service Provider mechanism. JDBC 4.0 Drivers must include
the file META-INF/services/java.sql.Driver. This file contains the name of
the JDBC driver’s implementation of java.sql.Driver. CODE EXAMPLE 9-3 shows
the contents of the META-INF/services/java.sql.Driver file in order to load the
my.sql.driver class.

my.sql.Driver

CODE EXAMPLE 9-3 META-INF/services/java.sql.Driver file contents

Note – Existing applications that currently load JDBC drivers using
Class.forName() will continue to work without modification.

9.3 The DriverAction Interface
A JDBC driver may implement the DriverAction interface when the driver wants to
be notified by the DriverManager method deregisterDriver.

54 JDBC 4.2 Specification • March 2014

A DriverAction implementation is not intended to be used directly by applications. A
JDBC Driver may choose to create its DriverAction implementation in a private class
to avoid it being called directly.

The JDBC driver's static initialization block must call
DriverManager.registerDriver(java.sql.Driver, java.sql.DriverAction) in order to inform
DriverManager which DriverAction implementation to call when the JDBC driver is
de-registered.

public class AcmeJdbcDriver implements java.sql.Driver {

static DriverAction da;

static {

java.sql.DriverManager.registerDriver(new

AcmeJdbcDriver(), da);

}

...

}

CODE EXAMPLE 9-4 Example static initializer for a driver implementing java.sql.Driver
and java.sql.DriverAction

9.4 The DriverManager Class
The DriverManager class works with the Driver interface to manage the set of
drivers available to a JDBC client. When the client requests a connection and
provides a URL, the DriverManager is responsible for finding a driver that
recognizes the URL and using it to connect to the corresponding data source.

Key DriverManager methods include:

n registerDriver — this method adds a driver to the set of available drivers and
is invoked implicitly when the driver is loaded. The registerDriver method is
typically called by the static initializer provided by each driver.

n getConnection — the method the JDBC client invokes to establish a connection.
The invocation includes a JDBC URL, which the DriverManager passes to each
driver in its list until it finds one whose Driver.connect method recognizes the
URL. That driver returns a Connection object to the DriverManager, which in
turn passes it to the application.

The format of a JDBC URL is :

n jdbc:<subprotocol>:<subname>

Chapter 9 Connections 55

where subprotocol defines the kind of database connectivity mechanism that may be
supported by one or more drivers. The contents and syntax of the subname will
depend on the subprotocol.

Note – A JDBC URL is not required to fully adhere to the URI syntax as defined in
RFC 3986, Uniform Resource Identifier (URI): Generic Syntax.

CODE EXAMPLE 9-5 illustrates how a JDBC client obtains a connection from the
DriverManager.

// Set up arguments for the call to the getConnection method.

// The sub-protocol "derby" in the driver URL indicates the

// use of the derby JDBC driver.

String url = "jdbc:derby:sample";

String user = "SomeUser";

String passwd = "SomePwd";

// Get a connection from the first driver in the DriverManager

// list that recognizes the URL "jdbc:derby:sample".

// The call to geConnection will also load the driver if needed.

// When the driver is loaded, an instance of the driver is created

// and the registerDriver method is also called to make the driver

// available to clients.

Connection con = DriverManager.getConnection(url, user, passwd);

CODE EXAMPLE 9-5 Loading a driver and getting a connection using the DriverManager

The DriverManager class also provides two other getConnection methods:

n getConnection(String url) for connecting to data sources that do not use
username and passwords.

n getConnection(String url, java.util.Properties prop), which
allows the client to connect using a set of properties describing the user name and
password along with any addition information that may be required.

The DriverPropertyInfo class provides information on the properties that the
JDBC driver can understand.

See the JDBC API Specification for more details.

56 JDBC 4.2 Specification • March 2014

9.5 The SQLPermission Class
The SQLPermission class represents a set of permissions that a codebase may be
granted.

Currently the only permission defined is setLog. The SecurityManager will
check for the setLog permission when an Applet calls one of the DriverManager
methods setLogWriter and setLogStream. If the codebase does not have the
setLog permission a java.lang.SecurityException exception will be thrown.

See the JDBC API Specification for more details.

9.6 The DataSource Interface
The DataSource interface, introduced in JDBC 2.0 Optional Package, is the
preferred approach to obtaining data source connections. A JDBC driver that
implements the Datasource interface returns connections that implement the
same interface, Connection, as those returned by a DriverManager using the
Driver interface. Using a Datasource object increases application portability by
making it possible for an application to use a logical name for a data source instead
of having to supply information specific to a particular driver. A logical name is
mapped to a DataSource object via a naming service that uses the Java Naming
and Directory InterfaceTM (JNDI). The DataSource object, represents a physical
data source and provides connections to that data source. If the data source or
information about it changes, the properties of the DataSource object can simply be
modified to reflect the changes; no change in application code is necessary.

The DataSource interface can be implemented so that it transparently provides the
following:

n Increased performance and scalability through connection pooling

n Support for distributed transactions through the XADataSource interface

Note – A DataSource implementation must include a no-argument constructor

The next three sections discuss (1) basic DataSource properties, (2) how logical
naming using the JNDI API improves an applications portability and makes it easier
to maintain, and (3) how to obtain a connection.

Chapter 9 Connections 57

Connection pooling and distributed transactions will be discussed in Chapter 11
“Connection Pooling” and Chapter 12 “Distributed Transactions”.

9.6.1 DataSource Properties

The JDBC API defines a set of properties to identify and describe a DataSource
implementation. The actual set required for a specific implementation depends on
the type of DataSource object, that is, whether it is a basic DataSource object, a
ConnectionPoolDataSource object, or an XADataSource object. The only
property required for all DataSource implementations is description.

The following table describes the standard DataSource properties:

DataSource properties follow the convention specified for properties of
JavaBeansTM components in the JavaBeans 1.01 Specification. DataSource
implementations may augment this set with implementation-specific properties. If
new properties are added, they must be given names that do not conflict with the
standard property names.

DataSource implementations must provide “getter” and “setter” methods for each
property they support. These properties typically are initialized when the
DataSource object is deployed, as in CODE EXAMPLE 9-6, in which a
VendorDataSource object implements the DataSource interface.

TABLE 9-1 Standard Data Source Properties

Property Name Type Description

databaseName String name of a particular database on a server

dataSourceName String a data source name; used to name an underlying
XADataSource object or
ConnectionPoolDataSource object when
pooling of connections is done

description String description of this data source

networkProtocol String network protocol used to communicate with the
server

password String a database password

portNumber int port number where a server is listening for requests

roleName String the initial SQL rolename

serverName String database server name

user String user’s account name

58 JDBC 4.2 Specification • March 2014

VendorDataSource vds = new VendorDataSource();

vds.setServerName("my_database_server");

String name = vds.getServerName();

CODE EXAMPLE 9-6 Setting and getting a DataSource property

DataSource properties are not intended to be directly accessible by JDBC clients.
This design is reinforced by defining the access methods on the implementation
class rather than on the public DataSource interface used by applications.
Furthermore, the object that the client manipulates can be a wrapper that only
implements the DataSource interface. The setter and getter methods for the
properties need not be exposed to the client.

Management tools that need to manipulate the properties of a DataSource
implementation can access those properties using introspection.

9.6.2 The JNDI API and Application Portability

The Java Naming and Directory Interface (JNDI) API provides a uniform way for
applications to access remote services over the network. This section describes how
it is used to register and access a JDBC DataSource object. See the JNDI
specification for a complete description of this interface.

Using the JNDI API, applications can access a DataSource object by specifying its
logical name. A naming service using the JNDI API maps this logical name to a
corresponding data source. This scheme greatly enhances portability because any of
the DataSource properties, such as portNumber or serverName, can be changed
without impacting the JDBC client code. In fact, the application can be re-directed to
a different underlying data source in a completely transparent fashion. This is
particularly useful in the three-tier environment, where an application server hides
the details of accessing different data sources.

CODE EXAMPLE 9-7 illustrates the use of a JNDI-based naming service to deploy a
new VendorDataSource object.

// Create a VendorDataSource object and set some properties

VendorDataSource vds = new VendorDataSource();

vds.setServerName("my_database_server");

vds.setDatabaseName("my_database");

vds.setDescription("data source for inventory and personnel");

// Use the JNDI API to register the new VendorDataSource object.

// Reference the root JNDI naming context and then bind the

// logical name "jdbc/AcmeDB" to the new VendorDataSource object.

Chapter 9 Connections 59

Context ctx = new InitialContext();

ctx.bind("jdbc/AcmeDB", vds);

CODE EXAMPLE 9-7 Registering a DataSource object with a JNDI-based naming service

Note – Java EE components use a special convention for naming their data sources
— see Chapter 5 "Naming" in the Java EE platform specification for more details.

9.6.3 Getting a Connection with a DataSource Object

Once a DataSource object has been registered with a JNDI-based naming service,
an application can use it to obtain a connection to the physical data source that it
represents, as is done in CODE EXAMPLE 9-8.

// Get the initial JNDI naming context

Context ctx = new InitialContext();

// Get the DataSource object associated with the logical name

// "jdbc/AcmeDB" and use it to obtain a database connection

DataSource ds = (DataSource)ctx.lookup("jdbc/AcmeDB");

Connection con = ds.getConnection("user", "pwd");

CODE EXAMPLE 9-8 Getting a Connection object using a DataSource object

The DataSource implementation bound to the name “jdbc/AcmeDB” can be
modified or replaced without affecting the application code.

9.6.4 Closing Connection Objects

The methods Connection.close(), Connection.isclosed() and
Connection.isValid() may be used close a Connection and to determine
whether a Connection has been closed or is still valid.

60 JDBC 4.2 Specification • March 2014

9.6.4.1 Connection.close

An application calls the method Connection.close() to indicate that it has
finished using a connection. All Statement objects created from a given
Connection object will be closed when the close method for the Connection
object is called.

Once a Connection has been closed, any attempt to access any of its methods with
the exception of the close(), isClosed() or isValid() methods will result in
a SQLException being thrown.

9.6.4.2 Connection.isClosed

The Connection.isClosed() method indicates whether the method
Connection.close() has been called by an application. This method generally
cannot be used to determine whether a connection to a database is valid.

Note – Some JDBC implementations may have enhanced isClosed() to determine
whether a connection to a database is valid. For maximum portability, The
Connection.isValid() method should be used.

9.6.4.3 Connection.isValid

The Connection.isValid() method indicates whether the Connection is still valid.
If Connection.isValid() returns true, the Connection is still valid. If a value of
false is returned, the Connection is not valid and any attempt to access any of its
methods with the exception of the close(), isClosed() or isValid() methods
will result in a SQLException being thrown.

61

CHAPTER 10

Transactions

Transactions are used to provide data integrity, correct application semantics, and a
consistent view of data during concurrent access. All JDBC compliant drivers are
required to provide transaction support. Transaction management in the JDBC API
mirrors the SQL:2003 specification and includes these concepts:

n Auto-commit mode

n Transaction isolation levels

n Savepoints

This chapter describes transaction semantics associated with a single Connection
object. Transactions involving multiple Connection objects are discussed in
Chapter 12 “Distributed Transactions”.

10.1 Transaction Boundaries and Auto-
commit
When to start a new transaction is a decision made implicitly by either the JDBC
driver or the underlying data source. Although some data sources implement an
explicit “begin transaction” statement, there is no JDBC API to do so. Typically, a
new transaction is started when the current SQL statement requires one and there is
no transaction already in place. Whether or not a given SQL statement requires a
transaction is also specified by SQL:2003.

The Connection attribute auto-commit specifies when to end transactions. Enabling
auto-commit causes a transaction commit after each individual SQL statement as
soon as that statement is complete. The point at which a statement is considered to
be “complete” depends on the type of SQL statement as well as what the application
does after executing it:

62 JDBC 4.2 Specification • March 2014

n For Data Manipulation Language (DML) statements such as Insert, Update,
Delete, and DDL statements, the statement is complete as soon as it has finished
executing.

n For Select statements, the statement is complete when the associated result set
is closed.

n For CallableStatement objects or for statements that return multiple results,
the statement is complete when all of the associated result sets have been closed,
and all update counts and output parameters have been retrieved.

10.1.1 Disabling Auto-commit Mode

CODE EXAMPLE 10-1 shows how to disable auto-commit mode.

// Assume con is a Connection object

con.setAutoCommit(false);

CODE EXAMPLE 10-1 Setting auto-commit off

When auto-commit is disabled, each transaction must be explicitly committed by
calling the Connection method commit or explicitly rolled back by calling the
Connection method rollback, respectively. This is appropriate for cases where
transaction management is being done in a layer above the driver, such as:

n when the application needs to group multiple SQL statements into a single
transaction

n when the transaction is being managed by the application server

The default is for auto-commit mode to be enabled when the Connection object is
created. If the value of auto-commit is changed in the middle of a transaction, the
current transaction is committed. If setAutoCommit is called and the value for
auto-commit is not changed from its current value, it is treated as a no-op.

It is an error to enable auto-commit for a connection participating in a distributed
transaction, as described in Chapter 12 “Distributed Transactions”.

10.2 Transaction Isolation Levels
Transaction isolation levels specify what data is “visible” to the statements within a
transaction. They directly impact the level of concurrent access by defining what
interaction, if any, is possible between transactions against the same target data
source. Possible interaction between concurrent transactions is categorized as
follows:

Chapter 10 Transactions 63

n dirty reads occur when transactions are allowed to see uncommitted changes to
the data. In other words, changes made inside a transaction are visible outside the
transaction before it is committed. If the changes are rolled back instead of being
committed, it is possible for other transactions to have done work based on
incorrect, transient data.

n nonrepeatable reads occur when:

a. Transaction A reads a row

b. Transaction B changes the row

c. Transaction A reads the same row a second time and gets different results

n phantom reads occur when:

a. Transaction A reads all rows that satisfy a WHERE condition

b. Transaction B inserts an additional row that satisfies the same condition

c. Transaction A reevaluates the WHERE condition and picks up the additional
“phantom” row

JDBC augments the four levels of transaction isolation defined by SQL:2003, by
adding TRANSACTION_NONE. From least restrictive to most restrictive, the
transaction isolation levels are:

1. TRANSACTION_NONE — indicates that the driver does not support transactions,
which means that it is not a JDBC compliant driver.

2. TRANSACTION_READ_UNCOMMITTED — allows transactions to see uncommitted
changes to the data. This means that dirty reads, nonrepeatable reads, and
phantom reads are possible.

3. TRANSACTION_READ_COMMITTED — means that any changes made inside a
transaction are not visible outside the transaction until the transaction is
committed. This prevents dirty reads, but nonrepeatable reads and phantom
reads are still possible.

4. TRANSACTION_REPEATABLE_READ — disallows dirty reads and nonrepeatable
reads. Phantom read are still possible.

5. TRANSACTION_SERIALIZABLE — specifies that dirty reads, nonrepeatable reads,
and phantom reads are prevented.

10.2.1 Using the setTransactionIsolation Method

The default transaction level for a Connection object is determined by the driver
supplying the connection. Typically, it is the default transaction level supported by
the underlying data source.

64 JDBC 4.2 Specification • March 2014

The Connection method setTransactionIsolation is provided to allow JDBC
clients to change the transaction isolation level for a given Connection object. The
new isolation level remains in effect for the remainder of the session or until the next
invocation of the setTransactionIsolation method.

The result of invoking the method setTransactionIsolation in the middle of a
transaction is implementation-defined.

The return value of the method getTransactionIsolation should reflect the
change in isolation level when it actually occurs. It is recommended that drivers
implement the setTransactionIsolation method to change the isolation level
starting with the next transaction. Committing the current transaction to make the
effect immediate is also a valid implementation.

It is possible for a given JDBC driver to not support all four transaction isolation
levels (not counting TRANSACTION_NONE). If a driver does not support the isolation
level specified in an invocation of setTransactionIsolation, it is allowed to
substitute a higher, more restrictive transaction isolation level. If a driver is unable
to substitute a higher transaction level, it throws an SQLException. The
DatabaseMetaData method supportsTransactionIsolationLevel may be
used to determine whether or not the driver supports a given level.

10.2.2 Performance Considerations

As the transaction isolation level increases, more locking and other DBMS overhead
is required to ensure the correct semantics. This in turn lowers the degree of
concurrent access that can be supported. As a result, applications may see decreased
performance when they use a higher transaction isolation level. For this reason, the
transaction manager, whether it is the application itself or part of the application
server, should weigh the need for data consistency against the requirements for
performance when determining which transaction isolation level is appropriate.

10.3 Savepoints
Savepoints provide finer-grained control of transactions by marking intermediate
points within a transaction. Once a savepoint has been set, the transaction can be
rolled back to that savepoint without affecting preceding work.

The DatabaseMetaData.supportsSavepoints method can be used to determine
whether a JDBC driver and DBMS support savepoints.

Chapter 10 Transactions 65

10.3.1 Setting and Rolling Back to a Savepoint

The method Connection.setSavepoint can be used to set a savepoint within
the current transaction. A transaction will be started if setSavePoint is invoked
and there is not an active transaction. The Connection.rollback method has
been overloaded to take a savepoint argument.

CODE EXAMPLE 10-2 inserts a row into a table, sets the savepoint svpt1, and then
inserts a second row. When the transaction is later rolled back to svpt1, the second
insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing ’FIRST’ will be added to TAB1.

conn.createStatement();

int rows = stmt.executeUpdate("INSERT INTO TAB1 (COL1) VALUES " +

"(’FIRST’)");

// set savepoint

Savepoint svpt1 = conn.setSavepoint("SAVEPOINT_1");

rows = stmt.executeUpdate("INSERT INTO TAB1 (COL1) " +

"VALUES (’SECOND’)");

...

conn.rollback(svpt1);

...

conn.commit();

CODE EXAMPLE 10-2 Rolling back a transaction to a savepoint

10.3.2 Releasing a Savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a
parameter and removes it and any subsequent savepoints from the current
transaction.

Once a savepoint has been released, attempting to reference it in a rollback operation
will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released
and become invalid when the transaction is committed or when the entire
transaction is rolled back.

Rolling a transaction back to a savepoint automatically releases and makes invalid
any other savepoints that were created after the savepoint in question.

66 JDBC 4.2 Specification • March 2014

67

CHAPTER 11

Connection Pooling

In a basic DataSource implementation, there is a 1:1 correspondence between the
client’s Connection object and the physical database connection. When the
Connection object is closed, the physical connection is dropped. Thus, the
overhead of opening, initializing, and closing the physical connection is incurred for
each client session.

A connection pool solves this problem by maintaining a cache of physical database
connections that can be reused across client sessions. Connection pooling greatly
improves performance and scalability, particularly in a three-tier environment
where multiple clients can share a smaller number of physical database connections.
In FIGURE 11-1, the JDBC driver provides an implementation of
ConnectionPoolDataSource that the application server uses to build and
manage the connection pool.

The algorithm used to manage the connection pool is implementation-specific and
varies with application servers. The application server provides its clients with an
implementation of the DataSource interface that makes connection pooling
transparent to the client. As a result, the client gets better performance and
scalability while using the same JNDI and DataSource APIs as before.

68 JDBC 4.2 Specification • March 2014

FIGURE 11-1 Connection pooling

The following sections introduce the ConnectionPoolDataSource interface, the
PooledConnection interface, and the ConnectionEvent class. These pieces,
which operate beneath the DataSource and Connection interfaces used by the
client, are incorporated into a step-by-step description of a typical connection
pooling implementation. This chapter also describes some important differences

Application Server

JDBC

Application

Cache of

PooledConnection objects

JDBC Driver

logical

Connection

object

physical

PooledConnection

object

ConnectionPoolDataSource API

DataSource API

Chapter 11 Connection Pooling 69

between a basic DataSource object and one that implements connection pooling. In
addition, it discusses how a pooled connection can maintain a pool of reusable
PreparedStatement objects.

Although much of the discussion in this chapter assumes a three-tier environment,
connection pooling is also relevant in a two-tier environment. In a two-tier
environment, the JDBC driver implements both the DataSource and
ConnectionPoolDataSource interfaces. This implementation allows an
application that opens and closes multiple connections to benefit from connection
pooling.

11.1 ConnectionPoolDataSource and
PooledConnection

Typically, a JDBC driver implements the ConnectionPoolDataSource interface,
and the application server uses it to obtain PooledConnection objects.
CODE EXAMPLE 11-1 shows the signatures for the two versions of the
getPooledConnection method.

public interface ConnectionPoolDataSource {

PooledConnection getPooledConnection() throws

SQLException;

PooledConnection getPooledConnection(String user,

String password) throws SQLException;

...

}

CODE EXAMPLE 11-1 The ConnectionPoolDataSource interface

A PooledConnection object represents a physical connection to a data source. The
JDBC driver’s implementation of PooledConnection encapsulates all of the details
of maintaining that connection.

An application server caches and reuses PooledConnection objects within its
implementation of the DataSource interface. When a client calls the method
DataSource.getConnection, the application server uses the physical
PooledConnection object to obtain a logical Connection object.
CODE EXAMPLE 11-2 shows the PooledConnection interface definition.

70 JDBC 4.2 Specification • March 2014

public interface PooledConnection {

Connection getConnection() throws SQLException;

void close() throws SQLException;

void addConnectionEventListener(

ConnectionEventListener listener);

void addStatementEventListener(

StatementEventListener listener);

void removeConnectionEventListener(

ConnectionEventListener listener);

void removeStatementEventListener(

StatementEventListener listener);

}

CODE EXAMPLE 11-2 The PooledConnection interface

When an application is finished using a connection, it closes the logical connection
using the method Connection.close. This closes the logical connection but does
not close the physical connection. Instead, the physical connection is returned to the
pool so that it can be reused.

Connection pooling is completely transparent to the client: A client obtains a pooled
connection and uses it just the same way it obtains and uses a non pooled
connection.

Note – When Connection.closed is called when using Connection pooling, any
properties that were set by Connection.setClientInfo will be cleared.

11.2 Connection Events
Recall that when an application calls the method Connection.close, the
underlying physical connection—the PooledConnection object—becomes
available for reuse. JavaBeans-style events are used to notify the connection pool
manager (the application server) that a PooledConnection object can be recycled.

In order to be notified of an event on a PooledConnection object, the connection
pool manager must implement the ConnectionEventListener interface and then
be registered as a listener by that PooledConnection object. The

Chapter 11 Connection Pooling 71

ConnectionEventListener interface defines the following two methods, which
correspond to the two kinds of events that can occur on a PooledConnection
object:

n connectionClosed — triggered when the logical Connection object associated
with this PooledConnection object is closed, that is, the application called the
method Connection.close

n connectionErrorOccurred — triggered when a fatal error, such as the server
crashing, causes the connection to be lost

A connection pool manager registers itself as a listener for a PooledConnection
object using the PooledConnection.addConnectionEventListener method.
Typically, a connection pool manager registers itself as a
ConnectionEventListener before returning a Connection object to an
application.

The driver invokes the ConnectionEventListener methods
connectionClosed and connectionErrorOccurred when the corresponding
events occur. Both methods take a ConnectionEvent object as a parameter, which
can be used to determine which PooledConnection object was closed or had an
error. When the JDBC application closes its logical connection, the JDBC driver
notifies the connection pool manager (the listener) by calling the listener’s
implementation of the method connectionClosed. At this point, the connection
pool manager can return the PooledConnection object to the pool for reuse.

When an error occurs, the JDBC driver notifies the listener by calling its
connectionErrorOccurred method and then throws an SQLException object to
the application to notify it of the same error. In the event of a fatal error, the bad
PooledConnection object is not returned to the pool. Instead, the connection pool
manager calls the PooledConnection.close method on the PooledConnection
object to close the physical connection.

11.3 Connection Pooling in a Three-tier
Environment
The following sequence of steps outlines what happens when a JDBC client requests
a connection from a DataSource object that implements connection pooling:

n The client calls DataSource.getConnection.

n The application server providing the DataSource implementation looks in its
connection pool to see if there is a suitable PooledConnection object— a
physical database connection—available. Determining the suitability of a given
PooledConnection object may include matching the client’s user authentication

72 JDBC 4.2 Specification • March 2014

information or application type as well as using other implementation-specific
criteria. The lookup method and other methods associated with managing the
connection pool are specific to the application server.

n If there are no suitable PooledConnection objects available, the application
server calls the ConnectionPoolDataSource.getPooledConnection
method to get a new physical connection. The JDBC driver implementing
ConnectionPoolDataSource creates a new PooledConnection object and
returns it to the application server.

n Regardless of whether the PooledConnection was retrieved from the pool or
was newly created, the application server does some internal bookkeeping to
indicate that the physical connection is now in use.

n The application server calls the method PooledConnection.getConnection
to get a logical Connection object. This logical Connection object is actually a
“handle” to a physical PooledConnection object, and it is this handle that is
returned by the DataSource.getConnection method when connection pooling
is in effect.

n The application server registers itself as a ConnectionEventListener by
calling the method PooledConnection.addConnectionEventListener.
This is done so that the application server will be notified when the
PooledConnection object is available for reuse.

n The logical Connection object is returned to the JDBC client, which uses the
same Connection API as in the basic DataSource case. Note that the
underlying PooledConnection object cannot be reused until the client calls the
method Connection.close.

Connection pooling can also be implemented in a two-tier environment where there
is no application server. In this case, the JDBC driver provides both the
implementation of DataSource which is visible to the client and the underlying
ConnectionPoolDataSource implementation.

11.4 DataSource Implementations and
Connection Pooling
Aside from improved performance and scalability, a JDBC application should not
see any difference between accessing a DataSource object that implements
connection pooling and one that does not. However, there are some important
differences in the application server and driver level implementations.

A basic DataSource implementation, that is, one that does not implement
connection pooling, is typically provided by a JDBC driver vendor. In a basic
DataSource implementation, the following are true:

Chapter 11 Connection Pooling 73

n The DataSource.getConnection method creates a new Connection object
that represents a physical connection and encapsulates all of the work to set up
and manage that connection.

n The Connection.close method shuts down the physical connection and frees
the associated resources.

In a DataSource implementation that includes connection pooling, a great deal
happens behind the scenes. In such an implementation, the following are true:

n The DataSource implementation includes an implementation-specific
connection pooling module that manages a cache of PooledConnection objects.
The DataSource object is typically implemented by the application server as a
layer on top of the driver’s implementations of the
ConnectionPoolDataSource and PooledConnection interfaces.

n The DataSource.getConnection method calls
PooledConnection.getConnection to get a logical handle to an underlying
physical connection. The overhead of setting up a new physical connection is
incurred only if there are no existing connections available in the connection pool.
When a new physical connection is needed, the connection pool manager will call
the ConnectionPoolDataSource method getPooledConnection to create
one. The work to manage the physical connection is delegated to the
PooledConnection object.

n The Connection.close method closes the logical handle, but the physical
connection is maintained. The connection pool manager is notified that the
underlying PooledConnection object is now available for reuse. If the
application attempts to reuse the logical handle, the Connection implementation
throws an SQLException.

n A single physical PooledConnection object may generate many logical
Connection objects during its lifetime. For a given PooledConnection object,
only the most recently produced logical Connection object will be valid. Any
previously existing Connection object is automatically closed when the associated
PooledConnection.getConnection method is called. Listeners (connection
pool managers) are not notified in this case.

This gives the application server a way to take a connection away from a client.
This is an unlikely scenario but may be useful if the application server is trying
to force an orderly shutdown.

n A connection pool manager shuts down a physical connection by calling the
method PooledConnection.close. This method is typically called only in
certain circumstances: when the application server is undergoing an orderly
shutdown, when the connection cache is being re initialized, or when the
application server receives an event indicating that an unrecoverable error has
occurred on the connection.

74 JDBC 4.2 Specification • March 2014

11.5 Deployment
Deploying a DataSource object that implements connection pooling requires that
both a client-visible DataSource object and an underlying
ConnectionPoolDataSource object be registered with a JNDI-based naming
service.

The first step is to deploy the ConnectionPoolDataSource implementation, as is
done in CODE EXAMPLE 11-3.

// ConnectionPoolDS implements the ConnectionPoolDataSource

// interface. Create an instance and set properties.

com.acme.jdbc.ConnectionPoolDS cpds =

new com.acme.jdbc.ConnectionPoolDS();

cpds.setServerName(“bookserver”);

cpds.setDatabaseName(“booklist”);

cpds.setPortNumber(9040);

cpds.setDescription(“Connection pooling for bookserver”);

// Register the ConnectionPoolDS with JNDI, using the logical name

// “jdbc/pool/bookserver_pool”

Context ctx = new InitialContext();

ctx.bind(“jdbc/pool/bookserver_pool”, cpds);

CODE EXAMPLE 11-3 Deploying a ConnectionPoolDataSource object

Once this step is complete, the ConnectionPoolDataSource implementation is
available as a foundation for the client-visible DataSource implementation. The
DataSource implementation is deployed such that it references the
ConnectionPoolDataSource implementation, as shown in CODE EXAMPLE 11-4.

// PooledDataSource implements the DataSource interface.

// Create an instance and set properties.

com.acme.appserver.PooledDataSource ds =

new com.acme.appserver.PooledDataSource();

ds.setDescription(“Datasource with connection pooling”);

// Reference the previously registered ConnectionPoolDataSource

ds.setDataSourceName(“jdbc/pool/bookserver_pool”);

Chapter 11 Connection Pooling 75

// Register the DataSource implementation with JNDI, using the logical

// name “jdbc/bookserver”.

Context ctx = new InitialContext();

ctx.bind(“jdbc/bookserver”, ds);

CODE EXAMPLE 11-4 Deploying a DataSource object backed by a
ConnectionPoolDataSource object

The DataSource object is now available for use in an application.

11.6 Reuse of Statements by Pooled
Connections
The JDBC specification provides support for statement pooling. This feature, which
allows an application to reuse a PreparedStatement object in much the same way
it can reuse a connection, is made available through a pooled connection.

FIGURE 11-2 provides a logical view of how a pool of PreparedStatement objects
can be associated with a PooledConnection object. As with the
PooledConnection object itself, the PreparedStatement objects can be reused
by multiple logical connections in a transparent manner.

76 JDBC 4.2 Specification • March 2014

FIGURE 11-2 Logical view of prepared statements reused by pooled connections

In FIGURE 11-2, the connection pool and statement pool are implemented by the
application server. However, this functionality could also be implemented by the
driver or underlying data source. This discussion of statement pooling is meant to
allow for any of these implementations.

11.6.1 Using a Pooled Statement

If a pooled connection reuses statements, the reuse must be completely transparent
to an application. In other words, from the application’s point of view, using a
PreparedStatement object that participates in statement pooling is exactly the

JDBC

Application

JDBC

Application

data source

PooledConnection

PooledConnection

Connection Pool

Application Server

Pool of

PreparedStatement

Objects

Pool of

PreparedStatement

Objects

Chapter 11 Connection Pooling 77

same as using one that does not. Statements are kept open for reuse entirely under
the covers, so there is no change in application code. If an application closes a
PreparedStatement object, it must still call Connection.prepareStatement in
order to use it again. The only visible effect of statement pooling is a possible
improvement in performance.

An application may find out whether a data source supports statement pooling by
calling the DatabaseMetaData method supportsStatementPooling. If the
return value is true, the application can then choose to use PreparedStatement
objects knowing that they may be pooled.

In many cases, reusing statements is a significant optimization. This is especially
true for complex prepared statements. However, it should also be noted that leaving
large numbers of statements open may have an adverse impact on the use of
resources.

11.6.2 Closing a Pooled Statement

An application closes a pooled statement exactly the same way it closes a non pooled
statement. Whether it is pooled or not, a statement that has been closed is no longer
available for use by the application, and an attempt to reuse it will cause an
exception to be thrown.

The following methods can close a pooled statement:

n Statement.close — called by an application; if the statement is being pooled,
closes the logical statement used by the application but does not close the
physical statement being pooled

n Connection.close — called by an application

n Non pooled connection — closes the physical connection and all statements
created by that connection. This is necessary because the garbage collection
mechanism is unable to detect when externally managed resources can be
released.

n Pooled connection — closes the logical connection and the logical statements it
returned but leaves open the underlying PooledConnection object and any
associated pooled statements

n PooledConnection.close — called by the connection pool manager to close
the physical connection and the associated physical statements being pooled by
the PooledConnection object

An application cannot directly close a physical statement that is being pooled;
instead, this is done by the connection pool manager. The method
PooledConnection.close closes the connection and all of the statements open on
a given connection, which releases the resources associated with those statements.

78 JDBC 4.2 Specification • March 2014

An application also has no direct control over how statements are pooled. A pool of
statements is associated with a PooledConnection object, whose behavior is
determined by the properties of the ConnectionPoolDataSource object that
produced it. Section 11.8 “ConnectionPoolDataSource Properties” discusses
these properties.

11.7 Statement Events
If the connection pool manager supports Statement pooling for
PreparedStatement objects, it must implement the StatementEventListener
interface and then be registered as a listener by that PooledConnection object. The
StatementEventListener interface defines the following two methods, which
correspond to the two kinds of events that can occur on a PreparedStatement
object:

n statementClosed — triggered when the logical PreparedStatement object
associated with this PooledConnection object is closed, that is, the application
called the method PreparedStatement.close

n statementErrorOccurred — triggered when a JDBC driver determines that a
PreparedStatement object is no longer valid

A connection pool manager registers itself as a listener for a PreparedStatement
object using the PooledConnection.addStatementEventListener method.
Typically, a connection pool manager registers itself as a
StatementEventListener before returning a PreparedStatement object to an
application.

The driver invokes the StatementEventListener methods statementClosed
and statementErrorOccurred when the corresponding events occur. Both
methods take a statementEvent object as a parameter, which can be used to
determine which PreparedStatement object was closed or had an error. When the
JDBC application closes its logical prepared statement, the JDBC driver notifies the
connection pool manager (the listener) by calling the listener’s implementation of the
method statementClosed. At this point, the connection pool manager can return
the PreparedStatement object to the pool for reuse.

When an error occurs that makes a PreparedStatement object invalid, the JDBC
driver notifies the listener by calling its statementErrorOccurred method and
then throws an SQLException object to the application to notify it of the same error.

Chapter 11 Connection Pooling 79

11.8 ConnectionPoolDataSource
Properties
As with the DataSource interface, the JDBC API defines a set of properties that can
be used to configure the behavior of connection pools. These are shown in TABLE 11-1:

Connection pool configuration properties follow the convention specified for
JavaBeans components in the JavaBeans specification. Connection pool vendors may
choose to augment this set with implementation-specific properties. If so, the
additional properties must be given names that do not conflict with the standard
property names.

Like DataSource implementations, ConnectionPoolDataSource
implementations must provide “getter” and “setter” methods for each property they
support. These properties are typically initialized when the
ConnectionPoolDataSource object is deployed. CODE EXAMPLE 11-5 illustrates
setting properties in a vendor’s implementation of the
ConnectionPoolDataSource interface.

TABLE 11-1 Standard Connection Pool Properties

Property Name Type Description

maxStatements int The total number of statements that the pool should
keep open. 0 (zero) indicates that caching of
statements is disabled.

initialPoolSize int The number of physical connections the pool
should contain when it is created

minPoolSize int The number of physical connections the pool
should keep available at all times. 0 (zero) indicates
that connections should be created as needed.

maxPoolSize int The maximum number of physical connections that
the pool should contain. 0 (zero) indicates no
maximum size.

maxIdleTime int The number of seconds that a physical connection
should remain unused in the pool before the
connection is closed. 0 (zero) indicates no limit.

propertyCycle int The interval, in seconds, that the pool should wait
before enforcing the current policy defined by the
values of the above connection pool properties

80 JDBC 4.2 Specification • March 2014

VendorConnectionPoolDS vcp = new VendorConnectionPoolDS();

vcp.setMaxStatements(25);

vcp.setInitialPoolSize(10);

vcp.setMinPoolSize(1);

vcp.setMaxPoolSize(0);

vcp.setMaxIdleTime(0);

vcp.setPropertyCycle(300);

CODE EXAMPLE 11-5 Setting connection pool configuration properties

The properties set on a ConnectionPoolDataSource object apply to the
PooledConnection objects that it creates. An application server managing a pool
of PooledConnection objects uses these properties to determine how to manage its
pool.

ConnectionPoolDataSource configuration properties are not intended to be
directly accessible by JDBC clients. Management tools that need to manipulate the
properties of a ConnectionPoolDataSource implementation can access those
properties using introspection.

81

CHAPTER 12

Distributed Transactions

Up to this point, the discussion of transactions has focused on the local case—
transactions involving a single data source. This chapter introduces the distributed
case where a single transaction involves multiple connections to one or more
underlying data sources.

The following discussion includes these topics:

n distributed transaction infrastructure

n transaction managers and resource managers

n the XADataSource, XAConnection, and XAResource interfaces

n two-phase commit

Transaction management in the JDBC API is designed to fit with the Java
Transaction APITM (JTATM) . The examples presented here are high-level; the JTA
specification should be consulted for a more substantial discussion.

12.1 Infrastructure
Distributed transactions require an infrastructure that provides these roles:

n Transaction manager — controls transaction boundaries and manages the two-
phase commit protocol. This typically will be an implementation of JTA.

n JDBC drivers that implement the XADataSource, XAConnection, and
XAResource interfaces. These are described in the next section.

n An application-visible implementation of DataSource to “sit on top of” each
XADataSource object and interact with the transaction manager. The
DataSource implementation is typically provided by an application server.

82 JDBC 4.2 Specification • March 2014

n Resource manager(s) to manage the underlying data. In the context of the JDBC
API, a resource manager is a DBMS server. The term “resource manager” is
borrowed from JTA to emphasize the point that distributed transactions using the
JDBC API follow the architecture specified in that document.

This infrastructure is most often implemented in a three-tier architecture that
includes the following:

1. A client tier

2. A middle tier that includes applications, an EJB server working with an external
transaction manager, and a set of JDBC drivers

3. Multiple resource managers

Distributed transactions can also be implemented in two tiers. In a two-tier
architecture, the application itself acts as the transaction manager and interacts
directly with the JDBC drivers’ XADataSource implementations.

The following diagram illustrates the distributed transaction infrastructure:

Chapter 12 Distributed Transactions 83

FIGURE 12-1 Infrastructure for distributed transactions

resource

manager

transaction

manager

JDBC

Driver A

resource

manager

Application Server

Connection

pool for A

JDBC Application

DataSource API

XAResource

B1

logical

Connection A1

logical

Connection B1

Connection

pool for B

JDBC

Driver B

XAResource

A1

physical

XAConnection

A1
XADataSource

API

XADataSource

API

physical

XAConnection

B1

84 JDBC 4.2 Specification • March 2014

The following sections provide more detail on the components of this architecture.

12.2 XADataSource and XAConnection
The XADataSource and XAConnection interfaces, which are defined in the
package javax.sql, are implemented by JDBC drivers that support distributed
transactions. An XAConnection object is a pooled connection that can participate in
a distributed transaction. More precisely, XAConnection extends the
PooledConnection interface by adding the method getXAResource. This
method produces an XAResource object that can be used by a transaction manager
to coordinate the work done on this connection with the other participants in the
distributed transaction. CODE EXAMPLE 12-1 gives the definition of the
XAConnection interface.

public interface XAConnection extends PooledConnection {

javax.transaction.xa.XAResource getXAResource()

throws SQLException;

}

CODE EXAMPLE 12-1 The XAConnection interface

Because they extend the PooledConnection interface, XAConnection objects
support all the methods of PooledConnection objects. They are reusable physical
connections to an underlying data source and produce logical connection handles
that can be passed back to a JDBC application.

XAConnection objects are produced by an XADataSource object. There is some
similarity between ConnectionPoolDataSource objects and XADataSource
objects in that they are both implemented below a DataSource layer that is visible
to the JDBC application. This architecture allows JDBC drivers to support distributed
transactions in a way that is transparent to the application. CODE EXAMPLE 12-2
shows the signatures for the two getXAConnection methods defined in
XADataSource.

public interface XADataSource {

XAConnection getXAConnection() throws SQLException;

XAConnection getXAConnection(String user,

String password) throws SQLException;

...

}

CODE EXAMPLE 12-2 The XADataSource interface

Chapter 12 Distributed Transactions 85

Typically, DataSource implementations built on top of an XADataSource
implementation will also include a connection pooling module.

12.2.1 Deploying an XADataSource Object

Deploying an XADataSource object is done in exactly the same manner as
previously described for ConnectionPoolDataSource objects. The two-step
process includes deploying the XADataSource object and the application-visible
DataSource object, as is done in CODE EXAMPLE 12-3.

// com.acme.jdbc.XADataSource implements the

// XADataSource interface.

// Create an instance and set properties.

com.acme.jdbc.XADataSource xads = new com.acme.jdbc.XADataSource();

xads.setServerName(“bookstore”);

xads.setDatabaseName(“bookinventory”);

xads.setPortNumber(9040);

xads.setDescription(“XADataSource for inventory”);

// First register xads with a JNDI naming service, using the

// logical name “jdbc/xa/inventory_xa”

Context ctx = new InitialContext();

ctx.bind(“jdbc/xa/inventory_xa”, xads);

// Next register the overlying DataSource object for application

// access. com.acme.appserver.DataSource is an implementation of

// the DataSource interface.

// Create an instance and set properties.

com.acme.appserver.DataSource ds =

new com.acme.appserver.DataSource();

ds.setDescription(“Datasource supporting distributed transactions”);

// Reference the previously registered XADataSource

ds.setDataSourceName(“jdbc/xa/inventory_xa”);

86 JDBC 4.2 Specification • March 2014

// Register the DataSource implementation with a JNDI naming service,

// using the logical name “jdbc/inventory”.

ctx.bind(“jdbc/inventory”, ds);

CODE EXAMPLE 12-3 Deploying a DataSource object backed by an XADataSource object

12.2.2 Getting a Connection

As in the connection pooling case, the application call to the method
DataSource.getConnection returns a logical handle produced by the physical
XAConnection object. The application code to get a logical connection is shown in
CODE EXAMPLE 12-4.

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup(“jdbc/inventory”);

Connection con = ds.getConnection(“myID”,“mypasswd”);

CODE EXAMPLE 12-4 Application code to get a logical connection

CODE EXAMPLE 12-5 is an example of code from the middle-tier server’s
implementation of the method DataSource.getConnection.

// Assume xads is a driver’s implementation of XADataSource

XADataSource xads = (XADataSource)ctx.lookup(“jdbc/xa/" +

"inventory_xa”);

// xacon implements XAConnection

XAConnection xacon = xads.getXAConnection(“myID”, “mypasswd”);

// Get a logical connection to pass back up to the application

Connection con = xacon.getConnection();

CODE EXAMPLE 12-5 Getting a logical connection from an XAConnection object

12.3 XAResource

The XAResource interface is defined in the JTA specification and is the mapping in
the Java programming language of the X/Open Group XA interface. An
XAResource object is produced by calling the XAConnection.getXAResource
method and is used to associate an XAConnection object with a distributed
transaction. A given XAConnection object may be associated with at most one

Chapter 12 Distributed Transactions 87

transaction at a time. The JDBC driver maintains a one-to-one correspondence
between an XAResource object and its associated XAConnection object; that is,
multiple calls to the getXAResource method must all return the same object.

In a typical scenario, the middle-tier application server calls the method
XAConnection.getXAResource and passes the returned object to an external
transaction manager. The transaction manager uses the XAResource object
exclusively—it does not access an XAConnection object directly.

The transaction manager coordinates the work of multiple XAResource objects,
each of which represents a resource manager participating in the distributed
transaction. Note that two XAResource objects may “point” to the same resource
manager, that is, they may be associated with XAConnection objects that were
produced by the same XADataSource.

The following XAResource methods are used by the transaction manager to
implement a two-phase commit protocol. Each method takes an xid parameter that
identifies the distributed transaction:

n start — tells the resource manager that the subsequent operations are part of
the distributed transaction.

n end — marks the end of this resource manager’s part of the distributed
transaction.

n prepare — gets the resource manager’s vote on whether to commit or roll back
the distributed transaction.

n commit — tells the resource manager to commit its part of the distributed
transaction. This method is invoked only if all the participating resource
managers voted to commit the transaction.

n rollback — tells the resource manager to roll back its part of the distributed
transaction. This method is invoked if one or more of the participating resource
managers voted to roll back the transaction.

See the JTA specification for a complete description of the XAResouce interface.

12.4 Transaction Management
Participation in a distributed transaction is defined as the work done between
invocations of the methods XAResource.start and XAResource.end. Outside
these boundaries, the transaction mode is local, and a connection behaves exactly
like a local connection.

With one exception, there is no difference in how an application participating in a
distributed transaction is coded. In contrast to the local case, the boundaries of a
distributed transaction must be controlled by an external transaction manager that is

88 JDBC 4.2 Specification • March 2014

coordinating the work of multiple connections. For this reason, it is an error for
applications to call any of the following Connection methods while they are
participating in a distributed transaction:

n setAutoCommit(true)

n commit

n rollback

n setSavepoint

The JDBC driver throws an SQLException if one of these operations is attempted
on a connection that is participating in a distributed transaction. If the connection is
later used for a local transaction, these operations are legal at that point.

Applications should also refrain from calling
Connection.setTransactionIsolation within the bounds of a distributed
transaction. The resulting behavior is implementation-defined.

If a connection has auto-commit mode already enabled at the time it joins a global
transaction, the attribute will be ignored. The auto-commit behavior will resume
when the connection returns to local transaction mode.

12.4.1 Two-phase Commit

The following steps outline how a transaction manager uses XAResource objects to
implement the two-phase commit protocol. These steps assume a three-tier
architecture where an application server is working with an external transaction
manager:

1. The application server gets XAResource objects from two different connections:

// XAConA connects to resource manager A

javax.transaction.xa.XAResource resourceA = XAConA.getXAResource();

// XAConB connects to resource manager B

javax.transaction.xa.XAResource resourceB = XAConB.getXAResource();

CODE EXAMPLE 12-6 Getting the XAResource object from an XAConnection object

2. The application server passes the XAResource objects to the transaction manager.
The transaction manager does not access the associated XAConnection objects
directly.

3. The transaction manager uses the XAResource objects to assign a piece of the
transaction to each of the associated resource managers. The transaction is
identified by xid, which represents the identifier generated by the transaction
manager when the transaction is created.

Chapter 12 Distributed Transactions 89

// Send work to resource manager A. The TMNOFLAGS argument indicates

// we are starting a new branch of the transaction, not joining or

// resuming an existing branch.

resourceA.start(xid, javax.transaction.xa.TMNOFLAGS);

// do work with resource manager A

...

// tell resource manager A that it’s done, and no errors have occurred

resourceA.end(xid, javax.transaction.xa.TMSUCCESS);

// do work with resource manager B.

resourceB.start(xid, javax.transaction.xa.TMNOFLAGS);

// B’s part of the distributed transaction

...

resourceB.end(xid, javax.transaction.xa.TMSUCCESS);

CODE EXAMPLE 12-7 Starting and ending transaction branches using the XAResource
interface

4. The transaction manager initiates the two-phase commit protocol by asking each
participant to vote:

resourceA.prepare(xid);

resourceB.prepare(xid);

CODE EXAMPLE 12-8 Initiating two-phase commit

A participating resource manager can vote to roll back the transaction by throwing a
javax.transaction.xa.XAException.

5. If both participants vote to commit, the transaction manager tells each one to
commit its piece of the distributed transaction (the second parameter tells the
resource manager not to use a one phase commit protocol on behalf of the xid):

resourceA.commit(xid, false);

resourceB.commit(xid, false);

CODE EXAMPLE 12-9 Committing the distributed transaction

6. If either resource manager votes to roll back, the transaction manager tells each
one to roll back its piece of the transaction:

resourceA.rollback(xid);

resourceB.rollback(xid);

CODE EXAMPLE 12-10 Rolling back the distributed transaction

90 JDBC 4.2 Specification • March 2014

The transaction manager is not required to use the same XAResource object to
commit/rollback a transaction branch as was used to execute the branch. If different
XAResource objects are used, however, they must be associated with
XAConnection objects that connect to the same resource manager.

Note – Steps 1-6 also apply to the case where XAConA and XAConB are two physical
connections to the same resource manager.

12.5 Closing the Connection
In a typical distributed transaction environment, the middle-tier server needs to be
notified when an application has finished using a connection. As in the earlier
discussion of PooledConnection objects, the middle-tier server will add itself as a
ConnectionEventListener so that it will be notified when the application calls
the method Connection.close. At this point, the server will notify the transaction
manager so that it can end the transaction branch for the corresponding
XAResource object. If the server’s DataSource implementation includes
connection pooling, the connection pooling module will be notified that it can return
the physical XAConnection object to the pool.

Note – A distributed transaction may still be active after a participating
Connection object is closed. This is not true for local transactions.

12.6 Limitations of the XAResource Interface
The javax.transaction.xa.XAResource interface is limited to defining only
the set of methods needed to join and participate in global transactions, as defined
by the X/Open XA standard. This allows any resource manager that implements the
interface to participate with any other resource manager or transaction manager that
has the same level of support.

Functionality that is not defined in the X/Open standard is correspondingly not
defined in the XAResource interface. Resource managers that provide for support
of features not defined in the X/Open XA standard, such as setting isolation levels
in global transactions, will have to do so in an implementation-defined way.

Chapter 12 Distributed Transactions 91

Users who use implementation-defined features should be aware that they will limit
the portability of their applications.

92 JDBC 4.2 Specification • March 2014

93

CHAPTER 13

Statements

This section describes the Statement interface and its subclasses,
PreparedStatement and CallableStatement. It also describes related topics,
including escape syntax, performance hints, and auto-generated keys.

13.1 The Statement Interface
The Statement interface defines methods for executing SQL statements that do not
contain parameter markers. The PreparedStatement interface adds methods for
setting input parameters, and the CallableStatement interface adds methods for
retrieving output parameter values returned from stored procedures.

Note – Any reference to the Statement interface within this specification includes
its subclasses PreparedStatement and CallableStatement unless stated
otherwise.

13.1.1 Creating Statements

Statement objects are created by Connection objects, as is done in
CODE EXAMPLE 13-1.

Connection conn = dataSource.getConnection(user, passwd);

Statement stmt = conn.createStatement()

CODE EXAMPLE 13-1 Creating a Statement object

Each Connection object can create multiple Statement objects that may be used
concurrently by the program. This is demonstrated in CODE EXAMPLE 13-2.

94 JDBC 4.2 Specification • March 2014

// get a connection from the DataSource object ds

Connection conn = ds.getConnection(user, passwd);

// create two instances of Statement

Statement stmt1 = conn.createStatement();

Statement stmt2 = conn.createStatement();

CODE EXAMPLE 13-2 Creating multiple Statement objects from a single connection

13.1.1.1 Setting ResultSet Characteristics

Additional constructors may be used to set the type and concurrency or the type,
concurrency, and holdability of any result sets produced by a statement. See
Chapter 15 “Result Sets” for more on the ResultSet interface.

CODE EXAMPLE 13-3 creates a Statement object that returns result sets that are
scrollable, that are insensitive to changes made while the ResultSet object is open,
that can be updated, and that do not close the ResultSet objects when commit is
called.

Connection conn = ds.getConnection(user, passwd);

Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE,

ResultSet.HOLD_CURSORS_OVER_COMMIT);

CODE EXAMPLE 13-3 Creating a scrollable, insensitive, updatable result set that stays open
after the method commit is called

See Chapter 15 “Result Sets” for more information on ResultSet types.

13.1.2 Executing Statement Objects

The method used to execute a Statement object depends on the type of SQL
statement being executed. If the Statement object represents an SQL query
returning a ResultSet object, the method executeQuery should be used. If the SQL
is known to be a DDL statement or a DML statement returning an update count, the
method executeUpdate should be used. If the type of the SQL statement is not
known, the method execute should be used.

Chapter 13 Statements 95

13.1.2.1 Returning a ResultSet object

CODE EXAMPLE 13-4 shows the execution of an SQL string returning a ResultSet
object.

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(“select TITLE, AUTHOR, ISBN " +

"from BOOKLIST”);

while (rs.next()){

...

}

CODE EXAMPLE 13-4 Executing a Statement object that returns a ResultSet object

If the SQL string being executed does not return a ResultSet object, the method
executeQuery throws an SQLException.

13.1.2.2 Returning an Update Count

In CODE EXAMPLE 13-5, the SQL statement being executed returns the number of rows
affected by the update for SQL Data Manipulation Language (DML) statements or 0
for SQL statements that return nothing.

Statement stmt = conn.createStatement();

int rows = stmt.executeUpdate(“update STOCK set ORDER = ‘Y’ " +

 "where SUPPLY = 0”);

if (rows > 0) {

...

}

CODE EXAMPLE 13-5 Executing a Statement object that returns an update count

The method executeUpdate throws an SQLException if the SQL string being
executed returns a ResultSet.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method executeLargeUpdate.

96 JDBC 4.2 Specification • March 2014

13.1.2.3 Returning Unknown or Multiple Results

If there are multiple results or if the type or number of results returned by a
Statement object are not known until run time, the Statement object should be
executed with the method execute. The methods getMoreResults,
getUpdateCount, and getResultSet can be used to retrieve all the results.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method getLargeUpdateCount.

The method execute returns true if the first result is a ResultSet object and false
if it is an update count.

When the method execute returns true, the method getResultSet is called to
retrieve the ResultSet object. When execute returns false, the method
getUpdateCount returns an int. If this number is greater than or equal to zero, it
indicates the update count returned by the statement. If it is -1, it indicates that there
are no more results.

If multiple results are being returned, the method getMoreResults can be called to
get the next result. As with the method execute, getMoreResults will return
true if the next result is a ResultSet object and false if the next result is an
update count or no more result are available.

CODE EXAMPLE 13-6 shows how to retrieve all the results from a Statment object.

Statement stmt = conn.createStatement();

boolean retval = cstmt.execute(sql_queries);

ResultSet rs;

int count;

do {

if (retval == false) {

count = stmt.getUpdateCount();

if (count == -1) {

// no more results

break;

} else {

// process update count

}

} else { // ResultSet

rs = stmt.getResultSet();

// process ResultSet

Chapter 13 Statements 97

}

retval = stmt.getMoreResults();

while (true);

CODE EXAMPLE 13-6 Executing a statement that returns multiple results

By default, each call to the method getMoreResults closes any previous
ResultSet object returned by the method getResultSet. However, the method
getMoreResults may take a parameter that specifies whether a ResultSet object
returned by getResultSet should be closed. The Statement interface defines
three constants that can be supplied to the method getMoreResults:

n CLOSE_CURRENT_RESULT — indicates that the current ResultSet object should
be closed when the next ResultSet object is returned

n KEEP_CURRENT_RESULT — indicates that the current ResultSet object should
not be closed when the next ResultSet object is returned

n CLOSE_ALL_RESULTS — indicates that any ResultSet objects that have been
kept open should be closed when the next result is returned

If the current result is an update count and not a ResultSet object, any parameter
passed to getMoreResults is ignored.

To determine whether a driver implements this feature, an application can call the
DatabaseMetaData method supportsMultipleOpenResults.

ResultSet rs1 = stmt.getResultSet();

rs1.next();

...

retval = stmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

if (retval == true) {

ResultSet rs2 = stmt.getResultSet();

rs2.next();

...

rs1.next();

}

retval = stmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

...

CODE EXAMPLE 13-7 Keeping multiple results from a Statement object open

98 JDBC 4.2 Specification • March 2014

13.1.3 Limiting the execution time for Statement
Objects

The setQueryTimeout method may be used to specify the minimum amount of
time before a a JDBC driver attempts to cancel a running statement. A JDBC driver
must apply this limit to the execute, executeBatch, executeQuery and
executeUpdate methods. Once the data source has had an opportunity to process
the request to terminate the running command, a SQLException will be thrown to
the client and no additional processing can occur against the previously running
command without re-executing the Statement.

Note – Some JDBC driver implementations may also apply this limit to ResultSet
methods. Please consult your driver vendor documentation for details.

Note – In the case of Statement batching, it is implementation defined as to
whether the time-out is applied to individual SQL commands added via the
addBatch method or to the entire batch of SQL commands invoked by the
executeBatch method.

13.1.4 Closing Statement Objects

An application calls the method Statement.close to indicate that it has finished
processing a statement. All Statement objects will be closed when the connection
that created them is closed. However, it is good coding practice for applications to
close statements as soon as they have finished processing them. This allows any
external resources that the statement is using to be released immediately.

Closing a Statement object will close and invalidate any instances of ResultSet
produced by that Statement object. The resources held by the ResultSet object
may not be released until garbage collection runs again, so it is a good practice to
explicitly close ResultSet objects when they are no longer needed.

Once a Statement has been closed, any attempt to access any of its methods with
the exception of the isClosed or close methods will result in a SQLException
being thrown.

These comments about closing Statement objects apply to PreparedStatement
and CallableStatement objects as well.

Chapter 13 Statements 99

13.2 The PreparedStatement Interface
The PreparedStatement interface extends Statement, adding the ability to set
values for parameter markers contained within the statement.

PreparedStatement objects represent SQL statements that can be prepared, or
precompiled, for execution once and then executed multiple times. Parameter
markers, represented by “?” in the SQL string, are used to specify input values to
the statement that may vary at runtime.

13.2.1 Creating a PreparedStatement Object

An instance of PreparedStatement is created in the same manner as a Statement
object, except that the SQL command is supplied when the statement is created:

Connection conn = ds.getConnection(user, passwd);

PreparedStatement ps = conn.prepareStatement(“INSERT INTO BOOKLIST" +

"(AUTHOR, TITLE, ISBN) VALUES (?, ?, ?)”);

CODE EXAMPLE 13-8 Creating a PreparedStatement object with three placeholder markers

13.2.1.1 Setting ResultSet Characteristics

As with createStatement, the method prepareStatement defines a constructor that
can be used to specify the characteristics of result sets produced by that prepared
statement.

Connection conn = ds.getConnection(user, passwd);

PreparedStatement ps = conn.prepareStatement(

“SELECT AUTHOR, TITLE FROM BOOKLIST WHERE ISBN = ?”,

ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);

CODE EXAMPLE 13-9 Creating a PreparedStatement object that returns forward only,
updatable result sets

100 JDBC 4.2 Specification • March 2014

13.2.2 Setting Parameters

The PreparedStatement interface defines setter methods that are used to
substitute values for each of the parameter markers in the precompiled SQL string.
The names of the methods follow the pattern "set<Type>".

For example, the method setString is used to specify a value for a parameter marker
that expects a string. Each of these setter methods takes at least two parameters. The
first is always an int equal to the ordinal position of the parameter to be set,
starting at 1. The second and any remaining parameters specify the value to be
assigned to the parameter.

PreparedStatement ps = conn.prepareStatement(“INSERT INTO BOOKLIST" +

 "(AUTHOR, TITLE, ISBN) VALUES (?, ?, ?)”);

ps.setString(1, “Zamiatin, Evgenii”);

ps.setString(2, “We”);

ps.setLong(3, 140185852L);

CODE EXAMPLE 13-10 Setting parameters in a PreparedStatement object

A value must be provided for each parameter marker in the PreparedStatement
object before it can be executed. The methods used to execute a PreparedStatement
object (executeQuery, executeUpdate and execute) will throw an SQLException if a
value is not supplied for a parameter marker.

The values set for the parameter markers of a PreparedStatement object are not
reset when it is executed. The method clearParameters can be called to explicitly
clear the values that have been set. Setting a parameter with a different value will
replace the previous value with the new one.

Note – If, in the execution of a PreparedStatement object, the JDBC driver reads
values set for the parameter markers by the methods setAsciiStream,
setBinaryStream, setCharacterStream, setNCharacterStream or
setUnicodeStream, those parameters must be reset prior to the next execution of
the PreparedStatement object otherwise a SQLException will be thrown. A
SQLException will also be thrown if the same stream is used by multiple
parameter markers within the same PreparedStatement object execution.

Chapter 13 Statements 101

Note – For any given Statement, an application should not modify the value
argument passed to a setXXX method after the setXXX method is called and before
the subsequent execute, executeQuery, executeUpdate, executeBatch or
clearParameters method is called. An application may modify the value
argument after the execute, executeQuery, executeUpdate, executeBatch or
clearParameters method is called, if there is a subsequent setXXX method call
that overwrites the previous value or if the Statement is not reused. Failure to
conform to this restriction may result in unpredictable behavior.

13.2.2.1 Type Conversions

The data type specified in a PreparedStatement setter method is a data type in
the Java programming language. The JDBC driver is responsible for mapping this to
the corresponding JDBC type (one of the SQL types defined in java.sql.Types) so
that it is the appropriate type to be sent to the data source. The default mapping is
specified in Appendix B TABLE B-2.

102 JDBC 4.2 Specification • March 2014

13.2.2.2 National Character Set Conversions

SQL:2003 provides support for national character set types, which are described in
the SQL:2003 specification to be an implementation defined character set. The
following JDBC Types may be used to access national character set types: NCHAR,
NVARCHAR, LONGNVARCHAR, and NCLOB. These types are analogous to the types
CHAR, VARCHAR, LONGVARCHAR and CLOB, except that the values are encoded using
an alternate character set, the national character set. Since Java types encode
character data using UTF-16, there is no reason to use an alternate Java type to hold
these values. However, there may be an advantage to distinguishing CLOB from
NCLOB. The JDBC specification uses Strings to represent NCHAR, NVARCHAR, and
LONGNVARCHAR data, automatically converting between the Java character set and
the national character set. JDBC uses NClob to represent NCLOB values. There is no
automatic conversion between Clob and NClob values. Please refer to the Java API
docs for java.lang.Character for additional information on how the Java
Language uses Unicode.

For maximum portability, an application must indicate to the JDBC driver when a
particular value corresponds to a national character type. When specifying a value
for a parameter marker which is a national character type, the application would call
the setNString, setNCharacterStream, setNClob, or setObject method. If
the setObject method is used , the target data type must be specified as
Types.NCHAR, Types.NCLOB, Types.NVARCHAR, or Types.LONGNVARCHAR. In
the event that an application does not indicate that a parameter marker value
corresponds to a national character type, the JDBC driver may interpret the value
incorrectly, resulting in the possibility of a data conversion error. In situations where
the JDBC driver can detect that a data conversion error might occur, the call to the
setXXX method will result in a SQLException being thrown. It might not always
possible for the driver to detect that a data conversion error may occur.

If the driver does not support national character types, an attempt to invoke the
methods setNString, setNCharacterStream, setNClob or setObject,
specifying a target data type as a national character set, may result in a
SQLException being thrown.

To retrieve a national character value, an application would call the method
getNString, getNClob, getNCharacterStream, or getObject.

13.2.2.3 Type Conversions Using the Method setObject

The method setObject can be used to convert an object in the Java programming
language to a JDBC type.

Chapter 13 Statements 103

The conversion is explicit when setObject is passed a Java Object and a JDBC
data type. The driver will attempt to convert the Object to the specified JDBC type
before passing it to the data source. If the object cannot be converted to the target
type, an SQLException object is thrown. In CODE EXAMPLE 13-11, a Java Object of
type Integer is being converted to the JDBC type SHORT.

Integer value = new Integer(15);

ps.setObject(1, value, java.sql.Types.SHORT);

CODE EXAMPLE 13-11 Converting an Integer object to an SQL SHORT

If setObject is called without a type parameter, the Java Object is implicitly mapped
using the default mapping for that object type.

Integer value = new Integer(15);

// value is mapped to java.sql.Types.INTEGER

ps.setObject(1, value);

CODE EXAMPLE 13-12 The method setObject using the default mapping

The default mapping is described in Appendix B TABLE B-4

Note – The method setObject will do custom mapping for SQL UDTs that have a
custom mapping. See Chapter 17 “Customized Type Mapping” for more
information.

13.2.2.4 Setting NULL Parameters

The method setNull can be used to set any parameter to JDBC NULL. It takes two
parameters, the ordinal position of the parameter marker, and the JDBC type of the
parameter.

ps.setNull(2, java.sql.Types.VARCHAR);

CODE EXAMPLE 13-13 Setting a String parameter to JDBC NULL

If a Java null is passed to any of the setter methods that take a Java object, the
parameter will be set to JDBC NULL.

Note – Not all databases allow for a non-typed Null to be sent to the underly data
source. For maximum portability, the setNull or the setObject(int
parameterIndex, Object x, int sqlType) method should be used instead
of setObject(int parameterIndex, Object x).

104 JDBC 4.2 Specification • March 2014

13.2.2.5 Clearing Parameters

The values set for IN parameter markers of a PreparedStatement object can be
explicitly cleared by invoking the clearParameters method. Any resources that
are used by PreparedStatement objects to represent the set values are also
released.

13.2.3 Describing Outputs and Inputs of a
PreparedStatement Object

The method PreparedStatement.getMetaData retrieves a ResultSetMetaData object
containing a description of the columns that will be returned by a prepared
statement when is it executed. The ResultSetMetaData object contains a record for
each column being returned. Methods in the ResultSetMetaData interface provide
information about the number of columns being returned and the characteristics of
each column.

PreparedStatement pstmt = conn.prepareStatement(

"SELECT * FROM CATALOG");

ResultSetMetaData rsmd = pstmt.getMetaData();

int colCount = rsmd.getColumnCount();

int colType;

String colLabel;

for (int i = 1; i <= colCount; i++) {

colType = rsmd.getColumnType(i);

colLabel = rsmd.getColumnLabel(i);

...

}

CODE EXAMPLE 13-14 Creating a ResultSetMetaData object and retrieving column
information from it

The method PreparedStatement.getParameterMetaData returns a
ParameterMetaData object describing the parameter markers that appear in the
PreparedStatement object. Methods in the ParameterMetaData interface
provide information about the number of parameters and their characteristics.

PreparedStatement pstmt = conn.prepareStatement(

"SELECT * FROM BOOKLIST WHERE ISBN = ?");

...

Chapter 13 Statements 105

ParameterMetaData pmd = pstmt.getParameterMetaData();

int colType = pmd.getParameterType(1);

...

CODE EXAMPLE 13-15 Creating a ParameterMetaData object and retrieving parameter
information from it

See the API specification for more details.

13.2.4 Executing a PreparedStatement Object

As with Statement objects, the method used to execute a PreparedStatement object
depends on the type of SQL statement being executed. If the PreparedStatement
object is a query returning a ResultSet object, it should be executed with the method
executeQuery. If it is a DML statement returning an update count, it should be
executed with the method executeUpdate. The method execute should be used only
if the return type of the statement is unknown.

If any of the PreparedStatement execute methods is called with an SQL string as a
parameter, an SQLException is thrown.

13.2.4.1 Returning a ResultSet Object

CODE EXAMPLE 13-16 shows a query being prepared and then executed multiple
times.

PreparedStatement pstmt = conn.prepareStatement(“SELECT AUTHOR, " +

"TITLE FROM BOOKLIST WHERE SECTION = ?”);

for (int i = 1; i <= maxSectionNumber; i++) {

pstmt.setInt(1, i);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

// process the record

}

rs.close();

}

pstmt.close();

CODE EXAMPLE 13-16 Preparing and executing a statement returning a result set

If the statement being executed does not return a ResultSet object an SQLException
is thrown by executeQuery.

106 JDBC 4.2 Specification • March 2014

13.2.4.2 Returning an Update Count

In CODE EXAMPLE 13-17, the SQL statement being prepared and executed returns the
number of rows affected by the update for SQL Data Manipulation Language (DML)
statements or 0 for SQL statements that return nothing.

PreparedStatement pstmt = conn.prepare(

“update stock set reorder = ’Y’ where stock < ?”);

pstmt.setInt(1, 5);

int num = pstmt.executeUpdate();

CODE EXAMPLE 13-17 Preparing and executing a statement returning an update count

If the statement being executed returns a ResultSet object, an SQLException is
thrown.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method executeLargeUpdate.

13.2.4.3 Returning Unknown or Multiple Results

If there are multiple results or if the type or number of results returned by a
PreparedStatement object are not known until run time, the
PreparedStatement object should be executed with the method execute. The
methods getMoreResults, getUpdateCount, and getResultSet can be used to
retrieve all the results.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method getLargeUpdateCount.

CODE EXAMPLE 13-18 shows how to retrieve all the results from a
PreparedStatment object.

PreparedStatement pstmt = conn.prepareStatement(sqlStatement);

boolean retval = pstmt.execute();

ResultSet rs;

int count;

do {

if (retval == false) {

count = pstmt.getUpdateCount();

if (count == -1) {

Chapter 13 Statements 107

// no more results

break;

} else {

// process update count

}

} else { // ResultSet

rs = pstmt.getResultSet();

// process ResultSet

}

retval = cstmt.getMoreResults();

while (true);

CODE EXAMPLE 13-18 Executing a prepared statement that returns multiple results

13.3 The CallableStatement Interface
The CallableStatement interface extends PreparedStatement with methods
for executing and retrieving results from stored procedures.

13.3.1 Creating a CallableStatement Object

As with Statement and PreparedStatement objects, CallableStatement objects are
created by Connection objects. CODE EXAMPLE 13-19 shows the creation of a
CallableStatement object for calling the stored procedure ‘validate’, which has a
return parameter and two other parameters.

CallableStatement cstmt = conn.prepareCall(

“{? = call validate(?, ?)}”);

CODE EXAMPLE 13-19 Creating a CallableStatement object

All the examples in this chapter use the escape syntax for calling stored procedures.
See “Stored Procedures and Functions” on page 116.

108 JDBC 4.2 Specification • March 2014

13.3.2 Setting Parameters

CallableStatement objects may take three types of parameters: IN, OUT, and INOUT.
The parameter can be specified as either an ordinal parameter or a named parameter.
A value must be set for each parameter marker in the statement that represents an
IN or INOUT parameter. The registerOutParameter method must be called for
each parameter marker which represents an OUT or INOUT parameter.

The number, type, and attributes of parameters to a stored procedure can be
determined using the DatabaseMetaData method getProcedureColumns.

Parameter ordinals, which are integers passed to the appropriate setter method, refer
to the parameter markers ("?") in the statement, starting at one. Literal parameter
values in the statement do not increment the ordinal value of the parameter markers.
In CODE EXAMPLE 13-20, the two parameter markers have the ordinal values 1 and 2.

CallableStatement cstmt = con.prepareCall(

"{CALL PROC(?, "Literal_Value", ?)}");

cstmt.setString(1, "First");

cstmt.setString(2, "Third");

CODE EXAMPLE 13-20 Specifying ordinal parameters

Named parameters can also be used to specify specific parameters. This is especially
useful when a procedure has many parameters with default values. Named
parameters can be used to specify only the values that have no default value. The
name of a parameter corresponds to the COLUMN_NAME field returned by
DatabaseMetaData.getProcedureColumns.

In CODE EXAMPLE 13-21, the procedure COMPLEX_PROC takes ten parameters, but only
the first and fifth parameters, PARAM_1 and PARAM_5, are required.

CallableStatement cstmt = con.prepareCall(

"{CALL COMPLEX_PROC(?, ?)}";

cstmt.setString("PARAM_1", "Price");

cstmt.setFloat("PARAM_5", 150.25);

CODE EXAMPLE 13-21 Specifying two input parameters to a stored procedure

Additional methods in the CallableStatement interface allow parameters to be
registered and retrieved by name.

The DatabaseMetaData.supportsNamedParameters method can be called to
determine if a JDBC driver and underlying data source support specifying named
parameters.

Chapter 13 Statements 109

It is not possible to combine setting parameters with ordinals and with names in the
same statement. If ordinals and names are used for parameters in the same
statement, an SQLException is thrown.

Note – In some cases it may not be possible to provide only some of the parameters
for a procedure. For example, if the procedure name is overloaded, the data source
determines which procedure to call based on the number of parameters. Enough
parameters must be provided to allow the data source to resolve any ambiguity.

13.3.2.1 IN Parameters

IN parameters are assigned values using the setter methods as described in “Setting
Parameters” on page 100. In CODE EXAMPLE 13-22, a string parameter and a date
parameter are set.

cstmt.setString(1, “October”);

cstmt.setDate(2, date);

CODE EXAMPLE 13-22 Setting IN parameters

13.3.2.2 OUT Parameters

The method registerOutParameter must be called to set the type for each OUT
parameter before a CallableStatement object is executed. When the stored
procedure returns from execution, it will use these types to set the values for any
OUT parameters.

The values of OUT parameters can be retrieved using the appropriate getter
methods defined in the CallableStatement interface. CODE EXAMPLE 13-23 shows
the execution of a stored procedure with two OUT parameters, a string and float,
and the retrieval of the OUT parameter values.

CallableStatement cstmt = conn.prepareCall(

“{CALL GET_NAME_AND_NUMBER(?, ?)}");

cstmt.registerOutParameter(1, java.sql.Types.STRING);

cstmt.registerOutParameter(2, java.sql.Types.FLOAT);

cstmt.execute();

// Retrieve OUT parameters

String name = cstmt.getString(1);

float number = cstmt.getFloat(2);

CODE EXAMPLE 13-23 Registering and retrieving OUT parameters

110 JDBC 4.2 Specification • March 2014

13.3.2.3 INOUT Parameters

Parameters that are both input and output parameters must be both set by using the
appropriate setter method and also registered by calling the
registerOutParameter method. The type implied by the setter method (see
TABLE B-1 in Appendix B “Data Type Conversion Tables‘‘) and the type supplied to
the method registerOutParameter must be the same.

CODE EXAMPLE 13-24 shows the stored procedure calc, which takes one INOUT float
parameter.

CallableStatement cstmt = conn.prepareCall(“{CALL CALC(?)}”);

cstmt.setFloat(1, 1237.98f);

ctsmt.registerOutParameter(1, java.sql.Types.FLOAT);

cstmt.execute();

float f = cstmt.getFloat(1);

CODE EXAMPLE 13-24 Executing a CallableStatement object with an INOUT parameter

13.3.2.4 Clearing Parameters

The values set for IN parameter markers or registered for OUT parameter markers of
a CallableStatement object can be explicitly cleared by invoking the
clearParameters method. Any resources that are used by CallableStatement
objects to represent the set or registered values are also released.

13.3.3 Executing a CallableStatement Object

As with Statement and PreparedStatement objects, the method used to execute
a CallableStatement object depends on whether it returns a single ResultSet
object, an update count, or multiple mixed results.

13.3.3.1 Returning a Single ResultSet Object

CODE EXAMPLE 13-25 shows the execution of a CallableStatement object that takes
one input parameter and returns a single ResultSet object.

CallableStatement cstmt = conn.prepareCall(“{CALL GETINFO(?)}”);

cstmt.setLong(1, 1309944422);

ResultSet rs = cstmt.executeQuery();

Chapter 13 Statements 111

// process the results

while (rs.next()) {

...

}

rs.close();

cstmt.close();

CODE EXAMPLE 13-25 Executing a CallableStatement object that returns a single result set

The method executeQuery throws an SQLException if the stored procedure does not
return a ResultSet object.

13.3.3.2 Returning an Update Count

CODE EXAMPLE 13-26 shows the execution of a CallableStatement object that
returns an update count.

CallableStatement cstmt = conn.prepareCall(“{call GETCOUNT(?)}”);

cstmt.setString(1, “Smith”);

int count = cstmt.executeUpdate();

cstmt.close();

CODE EXAMPLE 13-26 Executing a CallableStatement object returning an update count

If the stored procedure returns a ResultSet, the method executeUpdate throws
an SQLException.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method executeLargeUpdate.

13.3.3.3 Returning Unknown or Multiple Results

If there are multiple results or if the type or number of results returned by a
CallableStatement object are not known until run time, the
CallableStatement object should be executed with the method execute. The
methods getMoreResults, getUpdateCount, and getResultSet can be used to
retrieve all the results.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method getLargeUpdateCount.

112 JDBC 4.2 Specification • March 2014

CODE EXAMPLE 13-27 shows how to retrieve all the results from a
CallableStatment object.

CallableStatement cstmt = conn.prepareCall(procCall);

boolean retval = cstmt.execute();

ResultSet rs;

int count;

do {

if (retval == false) {

count = cstmt.getUpdateCount();

if (count == -1) {

// no more results

break;

} else {

// process update count

}

} else { // ResultSet

rs = cstmt.getResultSet();

// process ResultSet

}

retval = cstmt.getMoreResults();

while (true);

CODE EXAMPLE 13-27 Executing a callable statement that returns multiple results

13.3.3.4 REF Cursor Support

The REF CURSOR data type is supported by several databases. To return a REF
CURSOR from a stored procedure, the CallableStatement method registerOutParameter
may be used specifying Types.REF_CURSOR as the data type to be returned. The
CallableStatement method getObject, specifying ResultSet as the type to convert the
returned object to, would be called to retrieve the ResultSet representing the REF
CURSOR. The returned result set is a forward, read-only result set.

If registerOutParameter is called specifying Types.REF_CURSOR and the JDBC driver
does not support this data type, a SQLFeatureNotSupportedException will be thrown.

CallableStatement cstmt = conn.prepareCall(" { call mySproc(?) }");

Chapter 13 Statements 113

cstmt.registerOutParameter(1, Types.REF_CURSOR);

cstmt.executeQuery();

ResultSet rs = cstmt.getObject(1, ResultSet.class);

while (rs.next ()) {

 System.out.println("Name="+ rs.getString(1));

}

CODE EXAMPLE 13-28 Executing a callable statement that returns a ResultSet using a REF
CURSOR

13.4 Escape Syntax
The SQL string used in a Statement object may include JDBC escape syntax. Escape
syntax allows the driver to more easily scan for syntax that requires special
processing. Implementing this special processing in the driver layer improves
application portability.

Special escape processing might be needed for the following:

n commonly used features that do not have standard syntax defined by SQL, or
where the native syntax supported by the underlying data source varies widely
among vendors. The driver may translate the escape syntax to a specific native
syntax in this case.

n features that are not supported by the underlying data source but are
implemented by the driver.

Escape processing for a Statement object is turned on or off using the method
setEscapeProcessing, with the default being on. The RowSet interface also includes a
setEscapeProcessing method. The RowSet method applies to the SQL string
used to populate a RowSet object. The setEscapeProcessing method does not
work for a PreparedStatement object because its SQL string may have been
precompiled when the PreparedStatement object was created.

JDBC defines escape syntax for the following:

n scalar functions

n date and time literals

n outer joins

n calling stored procedures and functions

n escape characters for LIKE clauses

114 JDBC 4.2 Specification • March 2014

13.4.1 Scalar Functions

Almost all underlying data sources support numeric, string, time, date, system, and
conversion functions on scalar values. The escape syntax to access a scalar function
is:

{fn <function-name> (argument list)}

For example, the following code calls the function concat with two arguments to be
concatenated:

{fn concat("Hot", "Java")}

The following syntax gets the name of the current database user:

{fn user()}

Scalar functions may be supported by different data sources with slightly different
native syntax, and they may not be supported by all drivers. The driver will either
map the escaped function call into the native syntax or implement the function
directly.

Various DatabaseMetaData methods list the functions that are supported. For example,
the method getNumericFunctions returns a comma-separated list of the Open Group
CLI names of numeric functions, the method getStringFunctions returns string
functions, and so on.

Appendix C “Scalar Functions" provides a list of the scalar functions a driver is
expected to support. A driver is required to implement these functions only if the
data source supports them, however.

The escape syntax for scalar functions must only be used to invoke the scalar
functions defined in Appendix C “Scalar Functions". The escape syntax is not
intended to be used to invoke user-defined or vendor specific scalar functions.

13.4.2 Date and Time Literals

Data sources differ widely in the syntax they use for date, time, and timestamp
literals. The JDBC API supports ISO standard format for the syntax of these literals,
using an escape clause that the driver translates to native syntax.

The escape syntax for date literals is:

Chapter 13 Statements 115

{d 'yyyy-mm-dd'}

The driver will replace the escape clause with the equivalent native representation.
For example, the driver might replace {d ’1999-02-28’} with '28-FEB-99' if that is the
appropriate format for the underlying data source.

The escape syntax for TIME and TIMESTAMP literals are:

{t 'hh:mm:ss'}

{ts 'yyyy-mm-dd hh:mm:ss.f . . .'}

The fractional seconds (.f . . .) portion of the timestamp can be omitted.

Note – The leading zero may be omitted when specifying the mm or dd in date or
timestamp literals

13.4.3 Outer Joins

Outer joins are an advanced feature and are not supported by all data sources.
Consult relevant SQL documentation for an explanation of outer joins.

The escape syntax for an outer join is:

{oj <outer-join>}

where <outer-join> has the form:

table {LEFT|RIGHT|FULL} OUTER JOIN {table | <outer-join>} ON search-condition

(Note that curly braces ({}) in the preceding line indicate that one of the items
between them must be used; they are not part of the syntax.) The following SELECT
statement uses the escape syntax for an outer join.

Statement stmt = con.createStatement();

stmt.executeQuery("SELECT * FROM {oj TABLE1 " +

"LEFT OUTER JOIN TABLE2 ON DEPT_NO = 003420930}");

The JDBC API provides three DatabaseMetaData methods for determining the
kinds of outer joins a driver supports: supportsOuterJoins,
supportsFullOuterJoins, and supportsLimitedOuterJoins.

116 JDBC 4.2 Specification • March 2014

13.4.4 Stored Procedures and Functions

If a database supports stored procedures, they can be invoked using JDBC escape
syntax as follows:

{call <procedure_name> [(<argument-list>)]}

or, where a procedure returns a result parameter:

{? = call <procedure_name> [(<argument-list>)]}

The square brackets indicate that the (argument-list) portion is optional. Input
arguments may be either literals or parameter markers. See “Setting Parameters” on
page 108 for information on parameters.

The method DatabaseMetaData.supportsStoredProcedures returns true if the
database supports stored procedures.

JDBC drivers may optionally provide support for invoking user-defined or vendor
defined functions using the escape syntax for stored procedures.

The method DatabaseMetaData.supportsStoredFunctionsUsingCallSyntax
returns true if the database supports invoking user-defined or vendor defined
functions using the escape syntax for stored procedures. Please consult the
documentation for your JDBC driver for additional information

13.4.5 LIKE Escape Characters

The percent sign (%) and underscore (_) characters are wild card characters in SQL
LIKE clauses (% matches zero or more characters, and _ matches exactly one
character). In order to interpret them literally, they can be preceded by a backslash
(\), which is a special escape character in strings. One can specify which character to
use as the escape character by including the following syntax at the end of a LIKE
predicate:

{escape '<escape-character>'}

For example, the following query uses the backslash as an escape character, and
finds identifier names that begin with an underscore. Note that the Java compiler
will not recognize the backslash as a character unless it is preceded by a backslash.

stmt.executeQuery("SELECT name FROM Identifiers " +

"WHERE Id LIKE '_%' {escape '\\'}");

Chapter 13 Statements 117

13.4.6 Limiting Returned Rows Escape

The escape syntax for limiting the number of rows returned by a query is:

{limit <limit clause>}

where the format for the <limit clause> is:

rows [offset row_offset]

The square brackets indicate that the ’offset row_offset’ portion is optional. The value
given for rows indicates the maximum number of rows to be returned from this query.
The row_offset indicates the number of rows to skip from the rows returned from the
query before begining to return rows. A value of 0 for row_offset means do not skip
any rows. The value for rows and row_offset must be a 0 or greater integer value.

The following query will return no more than 20 rows:

Statement stmt = con.createStatement();

stmt.executeQuery("SELECT * FROM TABLE1 " +

"WHERE F1 >100 {limit 20}");

CODE EXAMPLE 13-29 Using the limit Escape Syntax

Note – A value of 0 for rows may return no rows or all rows depending on the
underlying database.

13.5 Performance Hints
The Statement interface has two methods that can be used to provide hints to a
JDBC driver: setFetchDirection and setFetchSize. The values supplied to these
methods are applied to each result set produced by the statement. The methods of
the same name in the ResultSet interface can be used to supply hints for just that
result set.

Hints provided to the driver via this interface may be ignored by the driver if they
are not appropriate.

The methods getFetchDirection and getFetchSize return the current value of the
hints. If either of these methods is called before the corresponding setter method has
been called, the value returned is implementation-defined.

118 JDBC 4.2 Specification • March 2014

13.6 Retrieving Auto Generated Values
Many database systems have a mechanism that automatically generates a value
when a row is inserted. The value that is generated may or may not be unique or
represent a key value depending on the executed SQL, table definition and the
configuration of the data source. The method Statement.getGeneratedKeys,
which can be called to retrieve the generated value, returns a ResultSet object with
a column for each automatically generated value. The methods execute,
executeUpdate or Connection.prepareStatement accept an optional
parameter, which can be used to indicate that any auto generated values should be
returned when the statement is executed or prepared.

Statement stmt = conn.createStatement();

// indicate that the key generated is going to be returned

int rows = stmt.executeUpdate("INSERT INTO ORDERS " +

"(ISBN, CUSTOMERID) " +

"VALUES (195123018, ’BILLG’)",

Statement.RETURN_GENERATED_KEYS);

ResultSet rs = stmt.getGeneratedKeys();

boolean b = rs.next();

if (b == true) {

// retrieve the new key value

...

}

CODE EXAMPLE 13-30 Retrieving auto generated keys

Additional methods allow the ordinals or names of the columns that should be
returned to be specified as an array. If the columns are not specified, the JDBC driver
implementation will determine the columns or value to return.

In CODE EXAMPLE 13-31 the Statement method executeUpdate is called with two
parameters, the first is the SQL statement to be executed, the second is an array of
String containing the column name that should be returned when
getGeneratedKeys is called:

String keyColumn[] = {"ORDER_ID"};

...

Statement stmt = conn.createStatement();

Chapter 13 Statements 119

int rows = stmt.executeUpdate("INSERT INTO ORDERS " +

"(ISBN, CUSTOMERID) " +

"VALUES (966431502, ’BILLG’)",

keyColumn);

ResultSet rs = stmt.getGeneratedKeys();

....

CODE EXAMPLE 13-31 Retrieving a named column using executeUpdate and
getGeneratedKeys

The result of invoking the method getGeneratedKeys when auto-commit is true
is implementation-defined. In order to increase application portability when
retrieving auto generated values, the Connection auto-commit attribute should be
set to false.

It is implementation-defined as to whether getGeneratedKeys will return
generated values after invoking the executeBatch method.

See the API Specification for more details.

Calling ResultSet.getMetaData on the ResultSet object returned by
getGeneratedKeys will produce a ResultSetMetaData object that can be used to
determine the number, type and properties of the generated value.

In some cases, such as in an insert select statement, more than one value may be
returned. The ResultSet object returned by getGeneratedKeys will contain a
row for each value that a statement generated. If no values are generated, an empty
result set will be returned.

The concurrency of the ResultSet object returned by getGeneratedKeys must be
CONCUR_READ_ONLY. The type of the ResultSet object must be either
TYPE_FORWARD_ONLY or TYPE_SCROLL_INSENSITIVE.

The method DatabaseMetaData.supportsGetGeneratedKeys returns true if a
JDBC driver and underlying data source support the retrieval of automatically
generated values. If a value of true is returned by the call to
supportsGetGeneratedKeys, a JDBC driver must support the return of auto-
generated values for SQL INSERT statements. Some JDBC driver implementations
might also support auto-generated values with SQL statements other than INSERT.
Please consult your JDBC driver documentation for details.

120 JDBC 4.2 Specification • March 2014

121

CHAPTER 14

Batch Updates

The batch update facility allows multiple SQL statements to be submitted to a data
source for processing at once. Submitting multiple SQL statements, instead of
individually, can greatly improve performance. Statement, PreparedStatement,
and CallableStatement objects can be used to submit batch updates.

14.1 Description of Batch Updates

14.1.1 Statements

The batch update facility allows a Statement object to submit a set of
heterogeneous SQL statements together as a single unit, or batch, to the underlying
data source.

Since the JDBC 2.0 API, a Statement object has had the ability to keep track of a list
of commands—or batch—that can be submitted together for execution. When a
Statement object is created, its associated batch is empty. An application adds
commands to a statement’s batch one at a time by calling the method
Statement.addBatch and providing it with the SQL statement to be added. Any
of the commands added to a batch must return a simple update count and must not
return a ResultSet.

If an application decides not to submit a batch of commands that has been
constructed for a statement, it can call the method Statement.clearBatch to
clear the batch of all commands.

In CODE EXAMPLE 14-1, all of the SQL statements required to insert a new employee
into a fictitious company database are submitted as a single batch.

122 JDBC 4.2 Specification • March 2014

// turn off autocommit

con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')");

stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");

stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution

int[] updateCounts = stmt.executeBatch();

CODE EXAMPLE 14-1 Creating and executing a batch of insert statements

In the example, auto-commit mode is disabled to prevent the driver from
committing the transaction when Statement.executeBatch is called. Disabling
auto-commit allows an application to decide whether or not to commit the
transaction in the event that an error occurs and some of the commands in a batch
cannot be processed successfully. For this reason, auto-commit should always be
turned off when batch updates are done. The commit behavior of executeBatch is
always implementation-defined when an error occurs and auto-commit is true.

It is not possible to set a savepoint "within" a batch of statements to enable partial
recovery. If a savepoint is set any time before the method executeBatch is called,
it is set before any of the statements that have been added to the batch are executed.

Although the focus in this section is on using Statement objects to do batch
updates, the discussion that follows applies to PreparedStatment and
CallableStatement objects as well.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method executeLargeBatch.

14.1.2 Successful Execution

The Statement.executeBatch method submits a statement’s batch to the
underlying data source for execution. Batch commands are executed serially (at least
logically) in the order in which they were added to the batch. When all of the
commands in a batch execute successfully, the method executeBatch returns an
integer array containing one entry for each command in the batch.

Chapter 14 Batch Updates 123

The entries in the array are ordered according to the order in which the commands
were processed (which, again, is the same as the order in which the commands were
originally added to the batch). When all of the commands in a batch have been
executed successfully, an entry in the array of update counts may have the following
values :

n 0 or greater — the command was processed successfully and the value is an
update count indicating the number of rows in the database that were affected by
the command’s execution

n Statement.SUCCESS_NO_INFO — the command was processed successfully,
but the number of rows affected is unknown

Calling the method executeBatch closes the calling Statement object’s current
result set if one is open. The statement’s batch is reset to empty once
executeBatch returns. The behavior of the methods executeQuery,
executeUpdate, and execute is implementation-defined when a statement’s
batch is non-empty.

Only DDL and DML commands that return a simple update count may be executed
as part of a batch. The method executeBatch throws a BatchUpdateException
if any of the commands in the batch fail to execute properly or if a command
attempts to return a result set. When a BatchUpdateException is thrown, an
application can call the BatchUpdateException.getUpdateCounts method to
obtain an integer array of update counts that describes the outcome of the batch
execution.

Note – It is implementation-defined as to whether
Statement.getGeneratedKeys will return generated values after invoking the
executeBatch or executeLargeBatch methods.

14.1.3 Handling Failures during Execution

A JDBC driver may or may not continue processing the remaining commands in a
batch once execution of a command fails. However, a JDBC driver must always
provide the same behavior with a particular data source. For example, a driver
cannot continue processing after a failure for one batch and not continue processing
for another batch.

If a driver stops processing after the first failure, the array returned by the method
BatchUpdateException.getUpdateCounts will always contain fewer entries
than there were statements in the batch. Since statements are executed in the order
that they are added to the batch, if the array contains N elements, this means that the
first N elements in the batch were processed successfully when executeBatch was
called.

124 JDBC 4.2 Specification • March 2014

When a driver continues processing in the presence of failures, the number of
elements in the array returned by the method
BatchUpdateException.getUpdateCounts always equals the number of
commands in the batch. When a BatchUpdateException object is thrown and the
driver continues processing after a failure, the array of update counts will contain
the following BatchUpdateException constant:

n Statement.EXECUTE_FAILED — the command failed to execute successfully.
This value is also returned for commands that could not be processed for some
reason—such commands fail implicitly.

JDBC drivers that do not continue processing after a failure never return
Statement.EXECUTE_FAILED in an update count array. Drivers of this type
simply return a status array containing an entry for each command that was
processed successfully.

A JDBC technology-based application can distinguish a JDBC driver that continues
processing after a failure from one that does not by examining the size of the array
returned by BatchUpdateException.getUpdateCounts. A JDBC driver that
continues processing always returns an array containing one entry for each element
in the batch. A JDBC driver that does not continue processing after a failure will
always return an array whose number of entries is less than the number of
commands in the batch.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method
BatchUpdateException.getLargeUpdateCounts.

14.1.4 PreparedStatement Objects

When a PreparedStatement object is used, a command in a batch consists of a
parameterized SQL statement and an associated set of parameters . The batch update
facility is used with a PreparedStatement object to associate multiple sets of
input parameter values with a single PreparedStatement object. The sets of
parameter values together with their associated parameterized update commands
can then be sent to the underlying data source engine for execution as a single unit.

CODE EXAMPLE 14-2 inserts two new employee records into a database as a single
batch. The PreparedStatement interface setter methods are used to create each
parameter set, one for each employee. The PreparedStatement.addBatch
method adds a set of parameters to the current command.

// turn off autocommit

con.setAutoCommit(false);

Chapter 14 Batch Updates 125

PreparedStatement stmt = con.prepareStatement(

"INSERT INTO employees VALUES (?, ?)");

stmt.setInt(1, 2000);

stmt.setString(2, "Kelly Kaufmann");

stmt.addBatch();

stmt.setInt(1, 3000);

stmt.setString(2, "Bill Barnes");

stmt.addBatch();

// submit the batch for execution

int[] updateCounts = stmt.executeBatch();

CODE EXAMPLE 14-2 Creating and executing a batch of prepared statements

Finally, the method PreparedStatement.executeBatch is called to submit the
updates to the underlying data source. Calling this method clears the statement’s
associated list of commands. The array returned by
PreparedStatement.executeBatch contains an element for each set of
parameters in the batch, similar to the case for Statement objects. Each element
contains either an update count or the generic ‘success’ indicator
SUCCESS_NO_INFO.

Error handling in the case of PreparedStatement objects is the same as error
handling in the case of Statement objects. Some drivers may stop processing as
soon as an error occurs, while others may continue processing the rest of the batch.

As with Statement objects, the number of elements in the array returned by
BatchUpdateException.getUpdateCounts indicates whether or not the driver
continues processing after a failure. The same three array element values are
possible: 0 or higher, Statement.SUCCESS_NO_INFO, or
Statement.EXECUTE_FAILED. The order of the entries in the array is the same
order as the order in which commands were added to the batch.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the methods executeLargeBatch and
BatchUpdateException.getLargeUpdateCounts.

126 JDBC 4.2 Specification • March 2014

14.1.5 CallableStatement Objects

The batch update facility works the same with CallableStatement objects as it
does with PreparedStatement objects. Multiple sets of input parameter values
may be associated with a CallableStatement object and sent to the underlying
data source together.

Stored procedures invoked using the batch update facility with a callable statement
must return a maximum of one update counts, if no update count is returned the
array element value will be Statement.SUCCESS_NO_INFO. Additionally, a
batchable stored procedure may not have OUT or INOUT parameters. The
CallableStatement.executeBatch method throws an SQLException, not a
sub-class of SQLException, if this restriction is violated. Error handling is
analogous to that for PreparedStatement objects.

Note – If your database supports returning an update count that may exceed
Integer.MAX_VALUE, use the method executeLargeBatch.

127

CHAPTER 15

Result Sets

The ResultSet interface provides methods for retrieving and manipulating the
results of executed queries.

15.1 Kinds of ResultSet Objects
ResultSet objects can have different functionality and characteristics. These
characteristics are result set type, result set concurrency, and cursor holdability.

15.1.1 ResultSet Types

The type of a ResultSet object determines the level of its functionality in two main
areas: (1) the ways in which the cursor can be manipulated and (2) how concurrent
changes made to the underlying data source are reflected by the ResultSet object.
The latter is called the sensitivity of the ResultSet object.

 The three different ResultSet types are described below.

1. TYPE_FORWARD_ONLY

n The result set is not scrollable; its cursor moves forward only, from before the first
row to after the last row.

n The rows contained in the result set depend on how the underlying database
materializes the results. That is, it contains the rows that satisfy the query at
either the time the query is executed or as the rows are retrieved.

2. TYPE_SCROLL_INSENSITIVE

n The result set is scrollable; its cursor can move both forward and backward
relative to the current position, and it can move to an absolute position.

128 JDBC 4.2 Specification • March 2014

n The result set is insensitive to changes made to the underlying data source while
it is open. It contains the rows that satisfy the query at either the time the query is
executed or as the rows are retrieved.

3. TYPE_SCROLL_SENSITIVE

n The result set is scrollable; its cursor can move both forward and backward
relative to the current position, and it can move to an absolute position.

n The result set reflects changes made to the underlying data source while the result
set remains open.

The default ResultSet type is TYPE_FORWARD_ONLY.

The method DatabaseMetaData.supportsResultSetType returns true if the
specified type is supported by the driver and false otherwise.

If the driver does not support the type supplied to the methods createStatement,
prepareStatement, or prepareCall, it generates an SQLWarning on the
Connection object that is creating the statement. When the statement is executed,
the driver returns a ResultSet object of a type that most closely matches the
requested type. An application can find out the type of a ResultSet object by
calling the method ResultSet.getType.

15.1.2 ResultSet Concurrency

The concurrency of a ResultSet object determines what level of update
functionality is supported.

The two concurrency levels are:

n CONCUR_READ_ONLY

The ResultSet object cannot be updated using the ResultSet interface.

n CONCUR_UPDATABLE

The ResultSet object can be updated using the ResultSet interface.

The default ResultSet concurrency is CONCUR_READ_ONLY.

The method DatabaseMetaData.supportsResultSetConcurrency returns
true if the specified concurrency level is supported by the driver and false
otherwise.

If the driver does not support the concurrency level supplied to the methods
createStatement, prepareStatement, or prepareCall, it generates an
SQLWarning on the Connection object that is creating the statement. An
application can find out the concurrency of a ResultSet object by calling the
method ResultSet.getConcurrency.

Chapter 15 Result Sets 129

If the driver cannot return a ResultSet object at the requested type and
concurrency, it determines the appropriate type before determining the concurrency.

15.1.3 ResultSet Holdability

Calling the method Connection.commit can close the ResultSet objects that
have been created during the current transaction. In some cases, however, this may
not be the desired behaviour. The ResultSet property holdability gives the
application control over whether ResultSet objects (cursors) are closed when
commit is called.

The following ResultSet constants may be supplied to the Connection methods
createStatement, prepareStatement, and prepareCall:

1. HOLD_CURSORS_OVER_COMMIT

n ResultSet objects (cursors) are not closed; they are held open when the method
commit is called.

2. CLOSE_CURSORS_AT_COMMIT

n ResultSet objects (cursors) are closed when commit is called. Closing cursors at
commit can result in better performance for some applications.

15.1.3.1 Determining ResultSet Holdability

The default holdability of ResultSet objects is implementation defined. The
DatabaseMetaData method getResultSetHoldability can be called to
determine the default holdability of result sets returned by the underlying data
source.

If the driver does not support the holdability level supplied to the methods
createStatement, prepareStatement, or prepareCall, it generates an
SQLWarning on the Connection object that is creating the statement. In the case of
a SQL CALL statement, the holdability of any returned ResultSets are determined
by the stored procedure, independent of the holdability level specified to the SQL
CALL statement.

It is the application’s responsibility, not the JDBC driver implementation, to validate
the holdability of the returned ResultSet. An application can find out the
holdability of a ResultSet object by calling the method
ResultSet.getHoldability.

130 JDBC 4.2 Specification • March 2014

15.1.4 Specifying ResultSet Type, Concurrency and
Holdability

The parameters supplied to the methods Connection.createStatement,
Connection.prepareStatement, and Connection.prepareCall determine
the type, concurrency, and holdability of ResultSet objects that the statement
produces. CODE EXAMPLE 15-1 creates a Statement object that will return scrollable,
read-only ResultSet objects that are insensitive to updates made to the data source
and that will be closed when the transaction in which they were created is
committed.

Connection conn = ds.getConnection(user, passwd);

Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY,

ResultSet.CLOSE_CURSORS_AT_COMMIT);

CODE EXAMPLE 15-1 Creating a scrollable, insensitive, read-only result set with a cursor
that is not holdable

The Statement, PreparedStatement and CallableStatement interfaces also
provide setter and getter methods for each of these properties.

15.2 Creating and Manipulating ResultSet
Objects

15.2.1 Creating ResultSet Objects

A ResultSet object is most often created as the result of executing a Statement
object. The Statement methods executeQuery and getResultSet both return a
ResultSet object, as do various DatabaseMetaData methods. CODE EXAMPLE 15-2
executes an SQL statement returning a ResultSet object.

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(“select author, title, isbn " +

"from booklist”);

CODE EXAMPLE 15-2 Executing a query returning a ResultSet object

Chapter 15 Result Sets 131

For each book in the table booklist, the ResultSet object will contain a row
consisting of three columns, author, title, and isbn. The following sections
detail how these rows and columns can be retrieved.

15.2.2 Cursor Movement

A ResultSet object maintains a cursor, which points to its current row of data.
When a ResultSet object is first created, the cursor is positioned before the first
row. The following methods can be used to move the cursor:

n next() — moves the cursor forward one row. Returns true if the cursor is now
positioned on a row and false if the cursor is positioned after the last row.

n previous() — moves the cursor backwards one row. Returns true if the cursor
is now positioned on a row and false if the cursor is positioned before the first
row.

n first() — moves the cursor to the first row in the ResultSet object. Returns
true if the cursor is now positioned on the first row and false if the
ResultSet object does not contain any rows.

n last() — moves the cursor to the last row in the ResultSet object. Returns
true if the cursor is now positioned on the last row and false if the ResultSet
object does not contain any rows.

n beforeFirst() — positions the cursor at the start of the ResultSet object,
before the first row. If the ResultSet object does not contain any rows, this
method has no effect.

n afterLast() — positions the cursor at the end of the ResultSet object, after
the last row. If the ResultSet object does not contain any rows, this method has
no effect.

n relative(int rows)— moves the cursor relative to its current position.

If rows is 0 (zero), the cursor is unchanged. If rows is positive, the cursor is
moved forward rows rows. If the cursor is less than the specified number of
rows from the last row, the cursor is positioned after the last row. If rows is
negative, the cursor is moved backward rows rows. If the cursor is less than
rows rows from the first row, the cursor is positioned before the first row.

The method relative returns true if the cursor is positioned on a valid row
and false otherwise.

If rows is 1, relative is identical to the method next. If rows is -1,
relative is identical to the method previous.

n absolute(int row)— positions the cursor on the row-th row of the
ResultSet object.

132 JDBC 4.2 Specification • March 2014

If row is positive, the cursor is moved row rows from the beginning of the
ResultSet object. The first row is 1, the second 2, and so on. If row is greater
than the number of rows in the ResultSet object, the cursor is positioned
after the last row.

If row is negative, the cursor is moved row rows from the end of the
ResultSet object. The last row is -1, the penultimate -2, and so on. If row is
greater than the number of rows in the ResultSet object, the cursor is
positioned before the first row.

Calling absolute(0) moves the cursor before the first row.

For a ResultSet object that is of type TYPE_FORWARD_ONLY, the only valid cursor
movement method is next. All other cursor movement methods throw an
SQLException.

15.2.3 Retrieving Values

The ResultSet interface provides methods for retrieving the values of columns
from the row where the cursor is currently positioned.

Two getter methods exist for each JDBC type: one that takes the column index as its
first parameter and one that takes the column label.

The columns are numbered from left to right, as they appear in the select list of the
query, starting at 1.

Column labels supplied to getter methods are case insensitive. If a select list contains
the same column more than once, the first instance of the column will be returned.

The index of the first instance of a column label can be retrieved using the method
findColumn. If the specified column is not found, the method findColumn throws
an SQLException.

ResultSet rs = stmt.executeQuery(sqlstring);

int colIdx = rs.findColumn(“ISBN”);

CODE EXAMPLE 15-3 Mapping a column label to a column index

Chapter 15 Result Sets 133

15.2.3.1 Data Type Conversions

The recommended ResultSet getter method for each JDBC type is shown in B.6 on
page B-198. This table also shows all of the possible conversions that a JDBC driver
may support. The method DataBaseMetaData.supportsConvert(int
fromType, int toType) returns true if the driver supports the given
conversion.

15.2.3.2 ResultSet Metadata

When the ResultSet method getMetaData is called on a ResultSet object, it
returns a ResultSetMetaData object describing the columns of that ResultSet
object. In cases where the SQL statement being executed is unknown until runtime,
the result set metadata can be used to determine which of the getter methods should
be used to retrieve the data. In CODE EXAMPLE 15-4, result set metadata is used to
determine the type of each column in the result set.

ResultSet rs = stmt.executeQuery(sqlString);

ResultSetMetaData rsmd = rs.getMetaData();

int colType [] = new int[rsmd.getColumnCount()];

for (int idx = 0, int col = 1; idx < colType.length; idx++, col++)

colType[idx] = rsmd.getColumnType(col);

CODE EXAMPLE 15-4 Retrieving result set metadata

15.2.3.3 Retrieving NULL values

The method wasNull can be called to determine if the last value retrieved was a
SQL NULL in the database.

When the column value in the database is SQL NULL, it may be returned to the Java
application as null, 0, or false, depending on the type of the column value.
Column values that map to Java Object types are returned as a Java null; those
that map to numeric types are returned as 0; those that map to a Java boolean are
returned as false. Therefore, it may be necessary to call the wasNull method to
determine whether the last value retrieved was a SQL NULL.

134 JDBC 4.2 Specification • March 2014

15.2.4 Modifying ResultSet Objects

ResultSet objects with concurrency CONCUR_UPDATABLE can be updated using
ResultSet methods. Columns can be updated and rows can be deleted using
methods defined in the ResultSet interface. New rows may also be inserted if a
JDBC driver supports these optional ResultSet interface methods.

15.2.4.1 Updating a Row

Updating a row in a ResultSet object is a two-phase process. First, the new value
for each column being updated is set, and then the change is applied to the row. The
row in the underlying data source is not updated until the second phase is
completed.

The ResultSet interface contains two update methods for each JDBC type, one
specifying the column to be updated as an index and one specifying the column
label as it appears in the select list.

Column labels supplied to updater methods are case insensitive. If a select list
contains the same column more than once, the first instance of the column will be
updated.

If an update method is called on a ResultSet whose concurrency level is
ResultSet.CONCUR_READ_ONLY, then a SQLException must be thrown.

The method updateRow is used to apply all column changes to the current row, and
to clear the record of changes made by prior update methods. The changes are not
made to the row until updateRow has been called. If updateRow is called on a
ResultSet whose concurrency level is ResultSet.CONCUR_READ_ONLY, then a
SQLException must be thrown. If the concurrency level is
ResultSet.CONCUR_UPDATABLE and updateRow is called without changes being
made to the row, the call will be considered a no-op.

The method cancelRowUpdates can be used to back out changes made to the row
before the method updateRow is called. CODE EXAMPLE 15-5 shows the current row
being updated to change the value of the column “author” to “Zamyatin, Evgenii
Ivanovich”:

Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(“select author from booklist " +

"where isbn = 140185852”);

rs.next();

rs.updateString(“author”, “Zamyatin, Evgenii Ivanovich”);

rs.updateRow();

Chapter 15 Result Sets 135

CODE EXAMPLE 15-5 Updating a row in a ResultSet object

The method DatabaseMetaData.ownUpdatesAreVisible(int type) returns
true if a ResultSet object of the specified type is able to see its own updates and
false otherwise.

The method DatabaseMetaData.othersUpdatesAreVisible(int type)
checks whether updates made by others (another transaction or another update
operation in the same transaction) are visible to ResultSet objects of the specified
type. This method returns true if a row updated by others is visible and false if it
is not.

A ResultSet object may be able to use the method rowUpdated to detect rows
that have had the method updateRow called on them. The method
DatabaseMetaData.updatesAreDetected(int type) returns true if a
ResultSet object of the specified type can determine if a row is updated using the
method rowUpdated and false otherwise.

For any given ResultSet, an application should not modify the value argument
passed to a updateXXX method after the updateXXX method is called and before the
subsequent updateRow or cancelRowUpdates method is called. An application
may modify the value argument after the updateRow or cancelRowUpdates
method is called, if there is updateXXX that overwrites the previous value or if the
update row is not reused. Failure to conform to this restriction may result in
unpredictable behavior.

15.2.4.2 Deleting a Row

A row in a ResultSet object can be deleted using the method deleteRow.
CODE EXAMPLE 15-6 shows the fourth row of the ResultSet rs being deleted.

rs.absolute(4);

rs.deleteRow();

CODE EXAMPLE 15-6 Deleting a row in a ResultSet object

After the method deleteRow has been called, the current row is deleted in the
underlying data source. This deletion is visible as a change in the open ResultSet
object if the row is either removed or replaced by an empty or invalid row.

136 JDBC 4.2 Specification • March 2014

If the deleted row is removed or replaced by an empty row, the method
DatabaseMetaData.ownDeletesAreVisible(int type) will return true. It
returns false if the ResultSet object still contains the deleted row, which means
that the deletion is not visible as a change to ResultSet objects of the given type.

The method DatabaseMetaData.othersDeletesAreVisible(int type)
checks whether deletions made by others (another transaction or another delete
operation in the same transaction) are visible to ResultSet objects of the specified
type. This method returns true if a row deleted by others is visible and false if it
is not.

If a ResultSet object can detect deletions, the ResultSet method rowDeleted
returns true when the current row has been deleted and false when it has not.
However, rowDeleted also returns false if the ResultSet object cannot detect
deletions. The method DatabaseMetaData.deletesAreDetected(int type)
can be called to see whether a ResultSet object of the specified type can call the
method rowDeleted to detect a deletion that is visible. The method
deletesAreDetected returns false if a row deleted from the ResultSet object
is removed from it and true if the deleted row is replaced by an empty or invalid
row.

In CODE EXAMPLE 15-7, application code uses metadata to process a ResultSet
object that may contain deleted rows.

if (dbmd.ownDeletesAreVisible(ResultSet.TYPE_SCROLL_INSENSITIVE) &&

 dbmd.deletesAreDetected(ResultSet.TYPE_SCROLL_INSENSITIVE)) {

 while (rs.next) {

if (rs.rowDeleted()) {

 continue;

} else {

 // process row

 ...

}

 }

} else {

 // if up-to-date data is needed, it is better to close this

 // ResultSet object and reexecute the query to get an updated

// ResultSet object

 ...

 rs.close();

 break;

}

Chapter 15 Result Sets 137

CODE EXAMPLE 15-7 Processing a ResultSet object containing deleted rows

Note – CODE EXAMPLE 15-7 does not cover the case where ownDeletesAreVisible
returns true and deletesAreDetected returns false. This will cause an
SQLException to be thrown when the cursor is positioned on a deleted row, so an
implementation with these characteristics requires that an application handle the
exception. Such an implementation does not appear to be a very likely.

After the method deleteRow has been called, the cursor will be positioned before
the next valid row. If the deleted row is the last row, the cursor will be positioned
after the last row.

15.2.4.3 Inserting a Row

New rows may be inserted using the ResultSet interface providing the JDBC
driver supports these optional methods. If the JDBC driver does not support
inserting rows using the ResultSet interface, a
SQLFeatureNotSupportedException must be thrown when the optional
methods are invoked. New rows are constructed in a special insert row. The steps to
insert a new row are:

1. Move the cursor to the insert row

2. Set the values for the columns of the row using the ResultSet interface update
methods

3. Insert the new row into the ResultSet object

CODE EXAMPLE 15-8 shows the steps necessary to insert a new row into the table
booklist.

// select all the columns from the table booklist

ResultSet rs = stmt.executeQuery(“select author, title, isbn " +

"from booklist”);

rs.moveToInsertRow();

// set values for each column

rs.updateString(1, “Huxley, Aldous”);

rs.updateString(2, “Doors of Perception and Heaven and Hell”);

rs.updateLong(3, 60900075);

// insert the row

rs.insertRow();

// move the cursor back to its position in the result set

138 JDBC 4.2 Specification • March 2014

rs.moveToCurrentRow();

CODE EXAMPLE 15-8 Inserting a new row into a ResultSet object

Each column in the insert row that does not allow null as a value and does not
have a default value must be given a value using the appropriate update method. If
this is not the case, the method insertRow will throw an SQLException.

The method DatabaseMetaData.ownInsertsAreVisible(int type) will
return true if newly inserted rows can be seen in result sets of the specified type.

The method DatabaseMetaData.othersInsertsAreVisible(int type)
checks whether inserts made by others (another transaction or another insert
operation in the same transaction) are visible to ResultSet objects of the specified
type. This method returns true if a row inserted by others is visible and false if it
is not.

If the ResultSet objects of the specified type can identify newly inserted rows, the
method DatabaseMetaData.insertsAreDetected(int type) will return
true. This indicates that the inserted rows are visible to the ResultSet object.

For any given ResultSet, an application should not modify the value argument
passed to a updateXXX method after the updateXXX method is called and before the
subsequent insertRow method is called. An application may modify the value
argument after the insertRow method is called, if there is updateXXX that
overwrites the previous value or if the insert row is not reused. Failure to conform to
this restriction may result in unpredictable behavior.

15.2.4.4 Positioned Updates and Deletes

JDBC drivers or DBMSs that do not support performing updates via the ResultSet
interface may support positioned updates and deletes via SQL commands. This
method of updating a row relies on using named cursors to allow multiple
statements to act on a single result set. CODE EXAMPLE 15-9 shows the use of the
method setCursorName to associate a cursor with a Statement object and then
the use of the method getCursorName to retrieve the name for use by a second
Statement object.

Statement stmt1 = conn.createStatement();

stmt1.setCursorName(“CURSOR1”);

ResultSet rs = stmt1.executeQuery(“select author, title, isbn " +

"from booklist for update of author”);

// move to the row we want to update

while (...) {

Chapter 15 Result Sets 139

rs.next()

}

String cursorName = rs.getCursorName();

Statement stmt2 = conn.createStatement();

// now update the row

int updateCount = stmt2.executeUpdate("update booklist " +

"set author = ’Zamyatin, Evgenii Ivanovich’ " +

"where current of “ + cursorName);

CODE EXAMPLE 15-9 Updating a row using positioned updates

The method DatabaseMetaData.supportsPositionedUpdates returns true if
the JDBC driver and DBMS support this facility.

15.2.5 Closing a ResultSet Object

A ResultSet object is explicitly closed when

n The close method on the ResultSet is executed, thereby releasing any
external resources

n The Statement or Connection object that produced the ResultSet is
explictly closed

A ResultSet object is implicitly closed when

n The associated Statement object is re-executed

n The ResultSet is created with a Holdability of
CLOSE_CURSORS_AT_COMMIT and an implicit or explicit commit occurs

Note – Some JDBC driver implementations may also implicitly close the
ResultSet when the ResultSet type is TYPE_FORWARD_ONLY and the next
method of ResultSet returns false.

Once a ResultSet has been closed, any attempt to access any of its methods with
the exception of the isClosed or close methods will result in a SQLException
being thrown. ResultSetMetaData instances that were created by a ResultSet
that has been closed are still accessible.

140 JDBC 4.2 Specification • March 2014

Note – The closing of a ResultSet object does not close the Blob, Clob, NClob or
SQLXML objects created by the ResultSet. Blob, Clob, NClob and SQLXML objects
remain valid for at least the duration of the transation in which they are created,
unless their free method is invoked.

141

CHAPTER 16

Advanced Data Types

Chapter 16 “Advanced Data Types” and Chapter 17 “Customized Type Mapping”
discuss additions to the JDBC API that allow an application written in the Java
programming language to access SQL:2003 data types, such as binary large objects
and structured types. This chapter also describes the use of the RowId data type
which is supported by many data sources even though it is not currently defined as
an SQL:2003 data type. If a data source does not support an advanced data type
described in these two chapters, a driver for that data source is not required to
implement the methods and interfaces associated with that data type.

16.1 Taxonomy of SQL Types
The latest version of the ANSI/ISO SQL standard is commonly referred to as
SQL:2003. The JDBC API incorporates a model of the SQL:2003 data types that
includes only those properties that are essential to exchanging data between a
database and an application written in the Java programming language.

SQL:2003 specifies these data types:

n SQL92 built-in types—the familiar SQL ‘column types’

n CHAR

n FLOAT

n DATE

n and so on

n SQL99 built-in types — types added by SQL99

n BOOLEAN — a truth value

n BLOB — a Binary Large OBject

n CLOB — a Character Large OBject

142 JDBC 4.2 Specification • March 2014

n New built-in types — new types added by SQL:2003

n XML — a XML Object

n User Defined Types

n Structured type — a user-defined type; for example:

CREATE TYPE PLANE_POINT AS (X FLOAT, Y FLOAT) NOT FINAL

n DISTINCT type — a user-defined type based on a built-in type; for example:

CREATE TYPE MONEY AS NUMERIC(10,2) FINAL

n Constructed types — new types based on a given base type

n REF(structured-type) — a pointer that persistently denotes an instance of
a structured type that resides in the database

n base-type ARRAY[n] — an array of n base-type elements

n Locators — entities that are logical pointers to data that resides on the database
server. A LOCATOR exists in the client environment and is a transient, logical
pointer to data on the server. A locator typically refers to data that is too large to
materialize on the client, such as images or audio. There are operators defined at
the SQL level to retrieve random-access pieces of the data denoted by the locator.

n LOCATOR(structured-type) — locator to a structured instance in server

n LOCATOR(array) — locator to an array in server

n LOCATOR(blob) — locator to a Binary Large Object in server

n LOCATOR(clob) — locator to a Character Large Object in server

n Type for managing data external to the data source

n Datalink — a reference to data external to the data source that is managed by
the data source. Datalink values are part of SQL MED (Management of
External Data), a part of the SQL ANSI/ISO standard specification. Having the
data source manage the reference to external data has several advantages:

i. Referential integrity — the referenced data can no longer be deleted or
renamed directly through file system APIs

ii. Access control — access to the data may be configured such that it is
controlled by the data source instead of the file system

iii. Coordinated backup and recovery — fields referenced by Datalink values
may be included in the data source’s backup process

iv. Transaction consistency — changes that affect both relational and external
data are executed in a transactional context to preserve the integrity and
consistency of the data

The remainder of this chapter discusses the default mechanism provided by the
JDBC API for accessing each of the SQL data types mentioned above. The JDBC API
also provides a means of customizing the mapping of SQL DISTINCT and structured

Chapter 16 Advanced Data Types 143

types into Java classes. This mechanism is discussed in Chapter 17 “Customized
Type Mapping”.

16.2 Mapping of Advanced Data Types
The JDBC API provides default mappings for advanced data types. Except for the
DISTINCT and DATALINK types, these default mappings take the form of interfaces.
The following list gives the data types and the interfaces to which they are mapped.

n BLOB — the Blob interface

n CLOB — the Clob interface

n NCLOB — the NClob interface

n ARRAY — the Array interface

n XML — the SQLXML interface

n Structured types — the Struct interface

n REF(structured type) — the Ref interface

n ROWID — the RowId interface

The other advanced data types with default mappings to the Java programming
language are:

n DISTINCT — the type to which the base type is mapped. For example, a
DISTINCT value based on an SQL NUMERIC type maps to a
java.math.BigDecimal type because NUMERIC maps to BigDecimal in the
Java programming language.

n DATALINK — a java.net.URL object.

16.3 Blob, Clob and NClob Objects

16.3.1 Blob, Clob and NClob Implementations

An implementation of a Blob, Clob or NClob object may either be locator based or
result in the object being fully materialized on the client.

144 JDBC 4.2 Specification • March 2014

By default, a JDBC driver should implement the Blob, Clob and NClob interfaces
using the appropriate locator type. An application does not deal directly with the
locator types that are defined in SQL.

For locator based implementations, Blob, Clob and NClob objects remain valid for
at least the duration of the transaction in which they are created, unless their free
method is invoked or they are garbage collected.

For implementations that fully materialize the Large Object (LOB), the Blob, Clob
and NClob objects will remain valid until such time as the free method is called or
the LOB is garbage collected.

Portable applications should not depend upon the LOB persisting past the end of the
transaction.

16.3.2 Creating Blob, Clob and NClob Objects

The Connection interface provides support for the creation of Blob, Clob and
NClob objects using the methods createBlob, createClob and createNClob.
The object that is created does not contain any data. Data may be added to the object
by calling one of the setXXX methods on the Blob, Clob or NClob interface.

In CODE EXAMPLE 16-1, the method Connection.createBlob is used to create an
empty Blob object. Blob.setBytes is used to write data to a Blob object.

Connection con = DriverManager.getConnection(url, props);

Blob aBlob = con.createBlob();

int numWritten = aBlob.setBytes(1, val);

CODE EXAMPLE 16-1 Creating and writing bytes to a Blob object

16.3.3 Retrieving BLOB, Clob and NClob Values in a
ResultSet

The binary large object (BLOB) and character large object (CLOB and NCLOB) data
types are treated similarly to the more primitive built-in types. Values of these types
can be retrieved by calling the getBlob, getClob and getNClob methods in the
ResultSet and CallableStatement interfaces.

Chapter 16 Advanced Data Types 145

For example, CODE EXAMPLE 16-2 retrieves a BLOB value from the first column of the
ResultSet rs and a CLOB value from the second column.

Blob blob = rs.getBlob(1);

Clob clob = rs.getClob(2);

CODE EXAMPLE 16-2 Retrieving BLOB and CLOB values

The Blob interface contains operations for returning the length of the BLOB value, a
specific range of bytes contained in the BLOB value, and so on. The Clob interface
contains corresponding operations that are character based. The API documentation
gives more details.

16.3.4 Accessing Blob, Clob and NClob Object Data

The Blob, Clob and NClob interfaces provide methods to access their internal
content. It is also possible to access a subset of the data contained within a Blob,
Clob and NClob object.

The example, CODE EXAMPLE 16-3, retrieves a 100 bytes of data from a BLOB and
CLOB object starting at offset 250.

InputStream is = aBlob.getBinaryStream(250, 100);

BufferedReader br = aClob.getCharacterStream(250, 100);

CODE EXAMPLE 16-3 Retrieving a data subset from a BLOB and CLOB object

16.3.5 Storing Blob, Clob and NClob Objects

A Blob, Clob or NClob object can be passed as an input parameter to a
PreparedStatement object just like other data types. The method setBlob sets a
PreparedStatement parameter with a Blob object, the method setClob sets a
Clob object and the method setNClob sets a NClob object as a parameter. In
CODE EXAMPLE 16-4, authorImage is an instance of java.sql.Blob retrieved from
another SQL statement, and authorBio is a an instance of java.sql.Clob
retrieved from another SQL statement.

PreparedStatement pstmt = conn.prepareStatement(

“INSERT INTO bio (image, text) VALUES (?, ?)");

pstmt.setBlob(1, authorImage);

pstmt.setClob(2, authorBio);

146 JDBC 4.2 Specification • March 2014

CODE EXAMPLE 16-4 Setting Blob and Clob objects as parameters to a
PreparedStatement object

The setBinaryStream and setObject methods may also be used to set a Blob
object as a parameter in a PreparedStatement object. The setAsciiStream,
setCharacterStream, and setObject methods are alternate means of setting a
Clob object as a parameter.The methods setNCharacterStream, and setObject
provide an alternate means of setting a NClob object as a parameter.

The updateBlob, updateClob and updateNClob methods can be used to update
a column value in an updatable result set.

Note – For maximum portability, applications should only rely on the storing of
locator-based Blob, Clob and NClob objects within the connection that created the
LOB.

16.3.6 Altering Blob, Clob and NClob Objects

The Blob, Clob and NClob interfaces provide methods to alter their internal
content. In CODE EXAMPLE 16-5, the method setBytes is used to write the first five
bytes of the Blob object retrieved from the column DATA.

byte[] val = {0,1,2,3,4};

...

Blob data = rs.getBlob(“DATA”);

int numWritten = data.setBytes(1, val);

if (dbmd.locatorsUpdateCopy() == true) {

 PreparedStatement ps = conn.prepareStatement(

 "UPDATE datatab SET data = ?");

 ps.setBlob("DATA", data);

 ps.executeUpdate();

}

CODE EXAMPLE 16-5 Writing bytes to a Blob object

Similarly, the Clob or NClob methods setString and truncate can be used to
change the value of a column containing a Clob or a NClob object.

The semantics of updates made to LOB objects are implementation defined. In some
implementations, the changes may be made to a copy of the LOB, and in others the
changes are made directly to the LOB. In implementations where the changes are
made to a copy of the LOB, a separate update statement must be issued to update
the LOB stored in the DBMS.

Chapter 16 Advanced Data Types 147

The method locatorsUpdateCopy in the DatabaseMetaData interface returns
true if the implementation updates a copy of the LOB and false if updates are
made directly to the LOB. CODE EXAMPLE 16-5 shows a typical use of the

locatorsUpdateCopy method.

16.3.7 Releasing Blob, Clob and NClob Resources

Blob, Clob and NClob objects remain valid for at least the duration of the
transaction in which they are created. This could potentially result in an application
running out of resources during a long running transaction. Applications may
release Blob, Clob and NClob resources by invoking their free method.

In CODE EXAMPLE 16-6, the method Clob.free is used to release the resources held
for a previously created Clob object.

Clob aClob = con.createClob();

int numWritten = aClob.setString(1, val);

aClob.free();

CODE EXAMPLE 16-6 releasing resources for a Clob object

16.4 SQLXML Objects

16.4.1 Creating SQLXML Objects

The Connection interface provides support for the creation of SQLXML objects
using the method createSQLXML. The object that is created does not contain any
data. Data may be added to the object by calling the setString,
setBinaryStream, setCharacterStream or setResult method on the
SQLXML interface.

In CODE EXAMPLE 16-7, the method Connection.createSQLXML is used to create
an empty SQLXML object. SQLXML.setString is used to write data to the SQLXML
object that was created.

148 JDBC 4.2 Specification • March 2014

Connection con = DriverManager.getConnection(url, props);

SQLXML sqlxml = con.createSQLXML();

sqlxml.setString(val);

CODE EXAMPLE 16-7 Creating and writing bytes to a SQLXML object

16.4.2 Retrieving SQLXML values in a ResultSet

The SQLXML data type is treated similarly to the more primitive built-in types. A
SQLXML value can be retrieved by calling the getSQLXML method in the
ResultSet or CallableStatement interface.

For example, CODE EXAMPLE 16-8 retrieves a SQLXML value from the first column of
the ResultSet rs.

SQLXML xmlVar = rs.getSQLXML(1);

CODE EXAMPLE 16-8 Retrieving a SQLXML value

SQLXML objects remain valid for at least the duration of the transaction in which
they are created, unless their free method is invoked.

16.4.3 Accessing SQLXML Object Data

The SQLXML interface provides the getString, getBinaryStream,
getCharacterStream and getSource methods to access its internal content. The
example, CODE EXAMPLE 16-9, retrieves the contents of an SQLXML object using the
getString method.

SQLXML xmlVal= rs.getSQLXML(1);

String val = xmlVal.getString();

CODE EXAMPLE 16-9 Retrieving a data from a SQLXML object using getString

The getBinaryStream or getCharacterStream methods can be used to obtain
an InputStream or a Reader that can be passed directly to an XML parser.
CODE EXAMPLE 16-10 obtains an InputStream from an SQLXML Object and then
processes the stream using a DOM parser.

SQLXML sqlxml = rs.getSQLXML(column);

InputStream binaryStream = sqlxml.getBinaryStream();

DocumentBuilder parser =

DocumentBuilderFactory.newInstance().newDocumentBuilder();

Document result = parser.parse(binaryStream);

Chapter 16 Advanced Data Types 149

CODE EXAMPLE 16-10 Returning an InputStream which can be used by an XML parser

The getSource method returns a javax.xml.transform.Source object.
Sources are used as inputs to XML parsers and XSLT transformers.

The example, CODE EXAMPLE 16-11, retrieves and parses the data from an SQLXML
object using the SAXSource object returned by the invocation of the getSource
method:

SQLXML xmlVal= rs.getSQLXML(1);

SAXSource saxSource = sqlxml.getSource(SAXSource.class);

XMLReader xmlReader = saxSource.getXMLReader();

xmlReader.setContentHandler(myHandler);

xmlReader.parse(saxSource.getInputSource());

CODE EXAMPLE 16-11 Using getSource to access SQLXML data

16.4.4 Storing SQLXML Objects

A SQLXML object can be passed as an input parameter to a PreparedStatement
object just like other data types. The method setSQLXML sets the designated
PreparedStatement parameter with a SQLXML object.

In CODE EXAMPLE 16-12, authorData is an instance of java.sql.SQLXML whose
data was initialized previously.

PreparedStatement pstmt = conn.prepareStatement(

“INSERT INTO bio (xmlData, authId) VALUES (?, ?)");

pstmt.setSQLXML(1, authorData);

pstmt.setInt(2, authorId);

CODE EXAMPLE 16-12 Setting an SQLXML object as a parameter to a PreparedStatement
object

The updateSQLXML method can be used to update a column value in an updatable
result set.

If the java.xml.transform.Result, Writer or OutputStream for the
SQLXML object has not been closed prior to calling setSQLXML or updateSQLXML,
a SQLException will be thrown.

150 JDBC 4.2 Specification • March 2014

16.4.5 Initializing SQLXML Objects

The SQLXML interface provides the methods setString, setBinaryStream,
setCharacterStream or setResult to initialize the content for an SQLXML
object that has been created by calling the Connection.createSQLXML method.

CODE EXAMPLE 16-13 uses the method setResult to return a SAXResult object to
populate a newly created SQLXML object.

SQLXML sqlxml = con.createSQLXML();

SAXResult saxResult = sqlxml.setResult(SAXResult.class);

ContentHandler contentHandler =

saxResult.getXMLReader().getContentHandler();

contentHandler.startDocument();

// set the XML elements and attributes into the result

contentHandler.endDocument();

CODE EXAMPLE 16-13 Using the setResult method to obtain a SAXResult object

CODE EXAMPLE 16-14 uses the setCharacterStream method to obtain a
java.io.Writer object in order to initialize a SQLXML object.

SQLXML sqlxml = con.createSQLXML();

Writer out= sqlxml.setCharacterStream();

BufferedReader in = new BufferedReader(new FileReader("xml/

foo.xml"));

String line= null;

while((line = in.readLine() != null) {

 out.write(line);

}

CODE EXAMPLE 16-14 Using setCharacterStream to initialize a SQLXML object

Similarly, the SQLXML setString method can be used to initialize an SQLXML
object.

If an attempt is made to call the setString, setBinaryStream,
setCharacterStream and setResult methods on an SQLXML object that has
previously been initialized, a SQLException will be thrown. If more than one call
to setBinaryStream, setCharacterStream and setResult occurs for the same
SQLXML object, a SQLException is thrown and the previously returned
javax.xml.transform.Result, Writer or OutputStream object is not
effected.

Chapter 16 Advanced Data Types 151

16.4.6 Releasing SQLXML Resources

SQLXML objects remain valid for at least the duration of the transaction in which
they are created. This could potentially result in an application running out of
resources during a long running transaction. Applications may release SQLXML
resources by invoking their free method.

In CODE EXAMPLE 16-15, the method SQLXML.free is used to release the resources
held for a previously created SQLXML object.

SQLXML xmlVar = con.createSQLXML();

xmlVar.setString(val);

xmlVar.free();

CODE EXAMPLE 16-15 releasing resources for a SQLXML object

16.5 Array Objects

16.5.1 Array Implementations

An implementation of a Array object may either be locator based or result in the
object being fully materialized on the client.

By default, a JDBC driver should implement the Array interface using the
appropriate locator type. An application does not deal directly with the locator type
that is defined in SQL.

For locator based implementations, Array objects remain valid for at least the
duration of the transaction in which they are created, unless their free method is
invoked or they are garbage collected.

For implementations that fully materialize the Array objects, the objects will remain
valid until such time as the free method is called or the object is garbage collected.

152 JDBC 4.2 Specification • March 2014

Portable applications should not depend upon the Array object persisting past the
end of the transaction.

16.5.2 Creating Array Objects

The Connection interface provides support for the creation of Array objects using
the method createArrayOf.

In CODE EXAMPLE 16-16, the method Connection.createArrayOf is used to
create an Array object whose SQL type is VARCHAR.

//The following Array object would be used with a table

//created such as:

//CREATE TABLE COFFEESHOP (SHOPID INTEGER,

// COFFEE_TYPES VARCHAR(15) ARRAY[10])

//

Connection con = DriverManager.getConnection(url, props);

String [] coffees= {"Espresso", "Colombian", "French Roast"};

Array aArray = con.createArrayOf("VARCHAR", coffees);

CODE EXAMPLE 16-16 Creating an Array object

16.5.3 Retrieving Array Objects

Data of type SQL ARRAY can be retrieved by calling the getArray method of the
ResultSet and CallableStatement interfaces. For example, the following line
of code retrieves an Array value from the first column of the ResultSet rs.

Array a = rs.getArray(1);

By default, a JDBC driver should implement the Array interface using an SQL
LOCATOR(array) internally. Also by default, Array objects remain valid only
during the transaction in which they are created.

The Array object returned to an application by the ResultSet.getArray and
CallableStatement.getArray methods is a logical pointer to the SQL ARRAY
value in the database; it does not contain the contents of the SQL ARRAY value. The
Array interface provides several versions of the methods getArray and

Chapter 16 Advanced Data Types 153

getResultSet that return the contents of an SQL ARRAY value to the client as a
materialized Java programming language array (Java array) or as a ResultSet
object. The API documentation gives complete details.

16.5.4 Storing Array Objects

The PreparedStatement methods setArray and setObject may be called to
pass an Array value as an input parameter to a PreparedStatement object.
CODE EXAMPLE 16-17 sets the Array object member_array, which was retrieved from
another table in the database, as the second parameter to the PreparedStatement
pstmt.

PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO dept (name, members) VALUES (?, ?)");

pstmt.setString(1, "biology");

pstmt.setArray(2, member_array);

pstmt.executeUpdate();

CODE EXAMPLE 16-17 Storing an Array object

A Java array may be passed as an input parameter by calling the method
PreparedSatement.setObject.

Note – For maximum portability, applications should only rely on the storing of
locator-based Array objects within the connection that created the Array.

16.5.5 Updating Array Objects

The ResultSet methods updateArray and updateObject can be used to update
a column value.

CODE EXAMPLE 16-18 uses the method ResultSet.updateArray to update the
value of the column LATEST_NUMBERS in one ResultSet object with an Array
object retrieved from the column NUMBERS in another ResultSet object.

// retrieve a column containing an SQL ARRAY value from ResultSet rs

java.sql.Array num = rs.getArray("NUMBERS");

...

// update the column "LATEST_NUMBERS" in a second ResultSet

// with the value retrieved...

154 JDBC 4.2 Specification • March 2014

rs2.updateArray("LATEST_NUMBERS", num);

rs2.updateRow();

CODE EXAMPLE 16-18 Updating a column with an Array object

16.5.6 Releasing Array Resources

Array objects remain valid for at least the duration of the transaction in which they
are created. This could potentially result in an application running out of resources
during a long running transaction. Applications may release Array resources by
invoking their free method.

In CODE EXAMPLE 16-19, the method Array.free is used to release the resources
held for a previously created Array object.

Array aArray = con.createArrayOf("VARCHAR", coffees);

...

aArray.free();

CODE EXAMPLE 16-19 releasing resources for a Array object

16.6 Ref Objects

16.6.1 Retrieving REF Values

An SQL REF(structured type) value can be retrieved as a Ref object by calling
the getRef method of the ResultSet and CallableStatement interfaces. For
example, in CODE EXAMPLE 16-20, the ResultSet rs contains a reference to an
instance of the SQL structured type dog that is stored in the table dogs. The code
retrieves this REF(dog) from the first column of rs.

ResultSet rs = stmt.executeQuery("SELECT OID FROM DOGS " +

"WHERE NAME = ’ROVER’");

rs.next();

Ref ref = rs.getRef(1);

CODE EXAMPLE 16-20 Retrieving a REF value

Chapter 16 Advanced Data Types 155

An SQL REF value is a pointer; therefore, a Ref object, which is the mapping of a
REF value, is likewise a pointer and does not contain the data of the structured type
instance to which it refers. A Ref object remains valid while the session or
connection on which it is created is open.

16.6.2 Retrieving the Referenced Value

The Ref object returned from the method getRef is a reference to an instance of a
structured type in the underlying data source. The methods getObject() and
getObject(Map map) can be used to retrieve the structured type instance that is
referenced. CODE EXAMPLE 16-21 shows how a reference to an instance of the
structured type Address can be dereferenced to retrieve the instance of Address.
This example would require that a map, mapping Address to its SQL type, had
been supplied to the Connection using the method setMap.

Ref ref = rs.getRef(1);

Address addr = (Address)ref.getObject();

CODE EXAMPLE 16-21 Retrieving the structured type instance referenced by a Ref object

16.6.3 Storing Ref Objects

The PreparedStatement.setRef method may be called to pass a Ref object as
an input parameter to a PreparedStatement object.

16.6.4 Storing the Referenced Value

An instance of a structured type retrieved with the method ResultSet.getRef or
CallableStatement.getRef is stored using the Ref.setObject method. In
CODE EXAMPLE 16-22, the table DOGS stores instances of the structured type DOG. The
SELECT statement selects the REF(DOG) that refers to the instance in which the
name is Rover. The referenced instance of the type DOG is retrieved using getValue.
The parameter map describes a mapping from the SQL type DOG to the Java class
Dog, which implements the SQLData interface.

ResultSet rs = stmt.executeQuery("SELECT OID FROM DOGS " +

"WHERE NAME = ’ROVER’");

rs.next();

Ref rover = rs.getRef("OID");

Dog dog = (Dog)rover.getObject(map);

156 JDBC 4.2 Specification • March 2014

// manipulate instance of Dog

dog.setAge(14);

...

// store updated Dog

rover.setObject((Object)dog);

CODE EXAMPLE 16-22 Retrieving and storing the structured type instance referenced by a
Ref object

16.6.5 Metadata

The type REF is defined in the class java.sql.Types. This value is returned by
methods such as DatabaseMetaData.getTypeInfo and
DatabaseMetaData.getColumns when a JDBC driver supports the Ref data
type.

16.7 Distinct Types
An SQL DISTINCT type is a new user defined data type that is based on one of the
primitive types. C and C++ programmers can think of it as being similar to a
typedef.

16.7.1 Retrieving Distinct Types

By default, a column of SQL type DISTINCT is retrieved by calling any getter
method that is appropriate to the type on which it is based. For example, the
following type declaration creates the type MONEY, which is based on the SQL type
NUMERIC.

CREATE TYPE MONEY AS NUMERIC(10,2) FINAL

CODE EXAMPLE 16-23 Creating a distinct type

CODE EXAMPLE 16-24 uses the method getBigDecimal to retrieve a MONEY value
because the underlying SQL NUMERIC type is mapped to the
java.math.BigDecimal type.

java.math.BigDecimal bd = rs.getBigDecimal(1);

CODE EXAMPLE 16-24 Retrieving a distinct type

Chapter 16 Advanced Data Types 157

16.7.2 Storing Distinct Types

Any setter method in the PreparedStatement interface that is appropriate for the
base type of an SQL DISTINCT type may be used to pass an input parameter of that
distinct type to a prepared statement. For example, given the definition of type
MONEY in CODE EXAMPLE 16-23, the method PreparedStatement.setBigDecimal
would be used.

16.7.3 Metadata

The type code DISTINCT is defined in the class java.sql.Types. This value is
returned by methods such as DatabaseMetaData.getTypeInfo and
DatabaseMetaData.getColumns when a JDBC driver supports this data type.

An SQL DISTINCT type must be defined as part of a particular database schema
before it can be used in a schema table definition. Information on schema-specific
user-defined types—of which DISTINCT types are one particular kind—can be
retrieved by calling the DatabaseMetaData.getUDTs method. For example,
CODE EXAMPLE 16-25 returns descriptions of all the SQL DISTINCT types defined in
the catalog-name.schema-name schema. If the driver does not support UDTs
or no matching UDTs are found, the getUDTs method returns an empty result set.

int[] types = {Types.DISTINCT};

ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

CODE EXAMPLE 16-25 Querying a DatabaseMetaData object for distinct types

Each row in the ResultSet object returned by the method getUDTs describes a
UDT. Each row contains the following columns:

TYPE_CAT String => the type's catalog (may be null)

TYPE_SCHEM String => the type's schema (may be null)

TYPE_NAME String => the SQL type name

CLASS_NAME String => a Java class name

DATA_TYPE short => value defined in java.sql.Types, such as DISTINCT

REMARKS String => explanatory comment on the type

BASE_TYPE short => value defined in java.sql.Types, for DISTINCT or
reference types (may be null)

158 JDBC 4.2 Specification • March 2014

Most of the columns above should be self-explanatory. The TYPE_NAME is the SQL
type name given to the DISTINCT type—MONEY in the example above. This is the
name used in a CREATE TABLE statement to specify a column of this type.

When DATA_TYPE is Types.DISTINCT, the CLASS_NAME column contains a fully
qualified Java class name. Instances of this class will be created if getObject is
called on a column of this DISTINCT type. For example, CLASS_NAME would default
to java.math.BigDecimal in the case of MONEY above. The JDBC API does not
prohibit a driver from returning a subtype of the class named by CLASS_NAME. The
CLASS_NAME value reflects a custom type mapping when one is used. See
Chapter 17 “Customized Type Mapping” for details.

16.8 Structured Types

16.8.1 Creating Structured Objects

The Connection interface provides support for the creation of Struct objects
using the method createStruct.

In CODE EXAMPLE 16-26, the method Connection.createStruct is used to create
an STRUCT object whose SQL type is EMPLOYEE.

//EMPLOYEE was created as:

//CREATE TYPE EMPLOYEE(EMPID INTEGER, FNAME VARCHAR(15),

//LNAME VARCHAR(20))

//

Connection con = DriverManager.getConnection(url, props);

Object [] employee= {100, "John", "Doe"};

Struct aStruct = con.createStruct("EMPLOYEE", employee);

CODE EXAMPLE 16-26 Creating an Struct object

Chapter 16 Advanced Data Types 159

16.8.2 Retrieving Structured Types

An SQL structured type value is always retrieved by calling the method
getObject. By default, getObject returns a value of type Struct for a structured
type. For example, the following line of code retrieves a Struct value from the first
column of the current row of the ResultSet object rs.

Struct struct = (Struct)rs.getObject(1);

The Struct interface contains methods for retrieving the attributes of a structured
type as an array of java.lang.Object values. By default, a JDBC driver
materializes the contents of a Struct prior to returning a reference to it to the
application. Also, by default a Struct object is considered valid as long as the Java
application maintains a reference to it.

16.8.3 Storing Structured Types

The PreparedStatement.setObject method may be called to pass a Struct
object as an input parameter to a prepared statement.

Note – For maximum portability, applications should only rely on the storing of
locator-based structured type objects within the connection that created the
structured type.

16.8.4 Metadata

The type code STRUCT is defined in the class java.sql.Types. This value is
returned by methods such as DatabaseMetaData.getTypeInfo and
DatabaseMetaData.getColumns when a JDBC driver supports structured data
types.

An SQL structured type must be defined as part of a particular database schema
before it can be used in a schema table definition. Information on schema-specific
user-defined types—of which STRUCT types are one particular kind—can be
retrieved by calling the DatabaseMetaData.getUDTs method. For example,
CODE EXAMPLE 16-27 returns descriptions of all the SQL structured types defined in
the catalog-name.schema-name schema.

int[] types = {Types.STRUCT};

ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

160 JDBC 4.2 Specification • March 2014

CODE EXAMPLE 16-27 Querying a DatabaseMetaData object for structured types

If the driver does not support UDTs or no matching UDTs are found, an empty result
set is returned. See section 16.7.3 for a description of the result set returned by the
method getUDTs.

When the DATA_TYPE returned by getUDTs is Types.STRUCT, the CLASS_NAME
column contains the fully qualified Java class name of a Java class. Instances of this
class are manufactured by the JDBC driver when getObject is called on a column
of this STRUCT type. Thus, CLASS_NAME defaults to java.sql.Struct for
structured types. If there is a custom mapping for the STRUCT type, CLASS_NAME
will be the implementation of the interface SQLData that specifies the mapping. The
JDBC API does not prohibit a driver from returning a subtype of the class named by
CLASS_NAME. Chapter 17 “Customized Type Mapping” provides more information
about implementations of the SQLData interface.

16.9 Datalinks
A DATALINK value references a file outside of the underlying data source that the
data source manages.

16.9.1 Retrieving References to External Data

A reference to external data being managed by the data source can be retrieved
using the method ResultSet.getURL. The java.net.URL object that is returned
can be used to manipulate the data.

java.net.URL url = rs.getURL(1);

CODE EXAMPLE 16-28 Retrieving a reference to an external data object

In cases where the type of URL returned by the methods getObject or getURL is
not supported by the Java platform, the URL can be retrieved as a String by calling
the method getString.

16.9.2 Storing References to External Data

The method PreparedStatement.setURL can be used to pass a java.net.URL
object to a prepared statement. In cases where the type of URL being set is not
supported by the Java platform, the URL can be stored using the setString
method.

Chapter 16 Advanced Data Types 161

16.9.3 Metadata

The type code DATALINK is defined in the class java.sql.Types. This value is
returned by methods such as DatabaseMetaData.getTypeInfo and
DatabaseMetaData.getColumns when a JDBC driver supports the Datalink
data type for references to external files.

16.10 RowId Objects

16.10.1 Lifetime of RowId Validity

A RowId may be thought of as the address for a given row. The address may be logical or

physical, however this is determined by the originating data source. A RowId object may
be valid so long as the identified row is not deleted and the lifetime of the RowId
is within the bounds of the lifetime specified by that RowId's data source.

RowId object lifetime validity may be determined by calling the
DatabaseMetaData.getRowIdLifetime() method, which returns a value of the
RowIdLifetime enumerated data-type.

TABLE 16-1 Standard RowId life-time validities

RowIdLifeTime Enumerated Datatype Specification

ROWID_UNSUPPORTED Indicates that this data source does not support the
ROWID type.

ROWID_VALID_OTHER Indicates that the lifetime of a RowId from this data
source is implementation dependant.

ROWID_VALID_TRANSACTION Indicates that the lifetime of a RowId from this data
source is at least the containing transaction as long
as the identified row is not deleted.

ROWID_VALID_SESSION Indicates that the lifetime of a RowId from this data
source is at least the containing session as long as
the identified row is not deleted.

ROWID_VALID_FOREVER Indicates that the lifetime of a RowId from this data
source is, effectively, unlimited as long as the
identified row is not deleted.

162 JDBC 4.2 Specification • March 2014

16.10.2 Retrieving RowId Values

A RowId may be retrieved using the getter methods defined in ResultSet and
CallableStatement. The returned java.sql.RowId object that is returned is an
immutable object that can be used for subsequent referrals as a unique identifier to a
row.

java.sql.RowId rowId_1 = rs.getRowId(1);

CODE EXAMPLE 16-29 Retrieving a RowId for a ResultSet object, rs

16.10.3 Using RowId Values

A RowId value may be used in a parameterized PreparedStatement to set a
parameter with a RowId object.

Connection conn = ds.getConnection(user, passwd);

PreparedStatement ps = conn.prepareStatement(“INSERT INTO BOOKLIST" +

"(ID, AUTHOR, TITLE, ISBN) VALUES (?, ?, ?,

?)”);

ps.setRowId(1, rowId_1);

CODE EXAMPLE 16-30 Setting a PreparedStatement RowId parameter

A RowId value may also be used in an updatable ResultSet to update a column with
a specific RowId value.

ResultSet rs = ...

rs.next();

rs.updateRowId(1, rowId_1);

CODE EXAMPLE 16-31 Setting a RowId value in the current row of a ResultSet

A RowId object value is typically not portable between data sources and should be
considered as specific to the data source when using the set or update method in
PreparedStatement and ResultSet objects respectively. It is therefore
inadvisable to get a RowId from a ResultSet object with a connection ’Foo’ and
then attempt to use the RowId in a unrelated ResultSet object with a connection
’Bar’.

163

CHAPTER 17

Customized Type Mapping

This chapter describes the support that the JDBC API provides for mapping SQL
structured and distinct types to classes in the Java programming language. Because
the mechanism for this custom mapping is an extension of the existing getObject
and setObject mechanism, it involves minimal extensions to the JDBC API from
the user’s point of view.

17.1 The Type Mapping
The SQL user-defined types (UDTs), structured types and DISTINCT types, can be
given a custom mapping to a class in the Java programming language. The default is
for a driver to use the default mappings between SQL data types and types in the
Java programming language. The default mapping for an SQL structured type is to
the interface Struct; the default mapping for an SQL DISTINCT type is to the type
to which the underlying type is mapped. If a custom mapping has been set up for a
UDT, the driver will use the custom mapping instead of the default mapping when
an application calls the getObject or setObject methods on that UDT.

Setting up a custom mapping requires two things:

1. Writing an implementation of the SQLData interface for the UDT. This class
typically maps the attribute(s) of an SQL structured type (or the single attribute of
a DISTINCT type) to fields. There is, however, great latitude allowed in how a
UDT is custom mapped. It is expected that most SQLData implementations will
be created using a tool.

2. Putting an entry in a java.util.Map object. The entry must contain the
following two items:

a. The fully qualified name of the SQL UDT that is to be mapped.

164 JDBC 4.2 Specification • March 2014

b. The Class object for the SQLData implementation. It is an error if the class
listed in a type map entry does not implement the SQLData interface.

For example, if the UDT is named mySchemaName.AUTHORS and the SQLData
implementation is the class Authors, the entry for the type map associated with the
Connection object conn would look like CODE EXAMPLE 17-1.

java.util.Map map = conn.getTypeMap();

map.put("mySchemaName.AUTHORS", Class.forName("Authors"));

conn.setTypeMap(map);

CODE EXAMPLE 17-1 Putting an entry in a connection’s type map

The method Connection.getTypeMap returns the type map associated with the
Connection object conn; the method Connection.setTypeMap sets the given
java.util.Map object as the type map for conn.

When an SQL value with a custom mapping is being retrieved (by the method
ResultSet.getObject, CallableStatement.getObject, or any of the other
methods that materialize an SQL value’s data on the client), the driver will check to
see if there is an entry in the connection’s type map for the SQL value that is to be
retrieved. If there is, the driver will map the SQL UDT to the class specified in the
type map. If there is no entry for the UDT in the connection’s type map, the UDT is
mapped to the default mapping.

Certain methods may take a type map as a parameter. A type map supplied as a
parameter supersedes the type map associated with the connection. A UDT that does
not have an entry in the type map supplied as a parameter will be mapped to the
default mapping. When a type map is explicitly supplied to a method, the
connection’s type map is never used.

17.2 Class Conventions
A class that appears in a type map entry must do the following:

1. Implement the interface java.sql.SQLData

2. Provide a niladic constructor, that is, a constructor that takes no parameters

The SQLData interface contains methods that convert instances of SQL UDTs to Java
class instances and that convert Java class instances back to SQL UDTs. For example,
the method SQLData.readSQL reads a stream of data values and builds a Java
object, while the method SQLData.writeSQL writes a sequence of values from a
Java object to a stream. These methods will typically be generated by a tool that
understands the database schema.

Chapter 17 Customized Type Mapping 165

This stream-based approach for exchanging data between SQL and the Java
programming language is conceptually similar to Java object serialization. The data
are read from and written to an SQL data stream provided by the JDBC driver. The
SQL data stream may be implemented on various network protocols and data
formats. It may be implemented on any logical data representation in which the leaf
SQL data items (of which SQL structured types are composed) can be read from
(written to) the data stream in a "depth-first" traversal of the structured types. That
is, each attribute value, which may itself be a structured type, appears fully (its
structure recursively elaborated) in the stream before the next attribute. In addition,
the attributes of an SQL structured type must appear in the stream in the order in
which they are declared in the type definition. For data of SQL structured types that
use inheritance, the attributes must appear in the stream in the order that they are
inherited. That is, the attributes of a supertype must appear before attributes of a
subtype.

If multiple inheritance is used, then the attributes of supertypes should appear in the
stream in the order in which the supertypes are listed in the type declaration. This
protocol does not require the database server to have any knowledge of the Java
programming language. However, as there is no support for multiple inheritance in
SQL:2003, this issue should not arise.

17.3 Streams of SQL Data
This section describes the stream interfaces, SQLInput and SQLOutput, which
support customization of the mapping of SQL UDTs to Java data types.

17.3.1 Retrieving Data

In a custom mapping, when data of SQL structured and distinct types are retrieved
from the database, they "arrive" in a stream implementing the SQLInput interface.
The SQLInput interface contains methods for reading individual data values
sequentially from the stream. CODE EXAMPLE 17-2 illustrates how a driver can use an
SQLInput stream to provide values for the fields of an SQLData object. The
SQLData object—the this object in the example—contains three persistent fields:
the String str, the Blob object blob, and the Employee object emp.

SQLInput sqlin;

...

this.str = sqlin.readString();

this.blob = sqlin.readBlob();

166 JDBC 4.2 Specification • March 2014

this.emp = (Employee)sqlin.readObject();

CODE EXAMPLE 17-2 Retrieving data using the SQLInput interface

The SQLInput.readString method reads a String value from the stream; the
SQLInput.readBlob method reads a Blob value from the stream. By default, the
Blob interface is implemented using an SQL locator, so calling the method
readBlob doesn’t materialize the SQL BLOB contents on the client. The
SQLInput.readObject method retrieves an object reference from the stream. In
the example, the Object returned is narrowed to an Employee object.

There are a number of additional methods defined on the SQLInput interface for
reading each of the types (readLong, readBytes, and so on). The
SQLInput.wasNull method can be called to check whether the last value read was
SQL NULL in the database.

17.3.2 Storing Data

When an instance of a class that implements SQLData is passed to a driver as an
input parameter via the setObject method, the JDBC driver calls the object’s
SQLData.writeSQL method. It also creates an SQLOutput stream to which the
method writeSQL writes the attributes of the custom mapped UDT. The method
writeSQL will typically have been generated by a tool from an SQL type definition.
CODE EXAMPLE 17-3 illustrates the use of the SQLOutput object SQLData.

sqlout.writeString(this.str);

sqlout.writeBlob(this.blob);

sqlout.writeObject(this.emp);

CODE EXAMPLE 17-3 Storing data using the SQLOutput interface

The example shows how the contents of an SQLData object can be written to an
SQLOutput stream. The SQLData object—the this object in the example—contains
three persistent fields: the String str, the Blob object blob, and the Employee
object emp. Each field is written in turn to the SQLOutput stream, SQLData. The
SQLOutput interface contains methods for writing each of the types defined in the
JDBC API.

Chapter 17 Customized Type Mapping 167

17.4 Examples
This section gives examples of SQL code as well as code in the Java programming
language. SQL code is used for creating structured types, creating tables for
instances of those types, populating the tables with instances of the structured types,
and creating an SQL DISTINCT type. This code sets up the SQL values that will be
mapped to classes in the Java programming language.

The examples of code in the Java programming language create implementations of
the SQLData interface for the newly created SQL UDTs and also show how a class in
the Java programming language can mirror SQL inheritance for structured types.

17.4.1 An SQL Structured Type

CODE EXAMPLE 17-4, which defines the structured types PERSON, FULLNAME, and
RESIDENCE, shows that it is possible for an attribute to be a REF value or another
structured type. PERSON and RESIDENCE each have an attribute that is a REF value,
and the REF value in one structured type references the other structured type. Note
also that FULLNAME is used as an attribute of PERSON.

CREATE TYPE RESIDENCE AS

(

DOOR NUMERIC(6),

STREET VARCHAR(100),

CITY VARCHAR(50),

OCCUPANT REF(PERSON)

) NOT FINAL

CREATE TYPE FULLNAME AS

(

FIRST VARCHAR(50),

LAST VARCHAR(50)

) NOT FINAL

CREATE TYPE PERSON AS

(

NAME FULLNAME,

168 JDBC 4.2 Specification • March 2014

HEIGHT REAL,

WEIGHT REAL,

HOME REF(RESIDENCE)

) NOT FINAL

CODE EXAMPLE 17-4 Creating SQL structured types

The types created in CODE EXAMPLE 17-4 are presumed to be created in the current
schema for the following examples.

CODE EXAMPLE 17-5 creates two tables that are maintained by the DBMS
automatically. The CREATE statements do two things:

1. Create tables that store instances of the structured types named in the OF part of
the statement (RESIDENCE in the first one, PERSON in the second). Each of the
subsequent INSERT INTO statements adds a new row representing an instance of
the UDT.

2. Create a REF value that is a pointer to each instance that is inserted into the table.
As indicated in the CREATE statement, the REF value is generated by the system,
which is done implicitly. Because REF values are stored in the table, they are
persistent pointers. This contrasts with LOCATOR types, which are logical pointers
but exist only as long as the transactions in which they are created.

CREATE TABLE HOMES OF RESIDENCE

(REF IS OID SYSTEM GENERATED,

OCCUPANT WITH OPTIONS SCOPE PEOPLE)

CREATE TABLE PEOPLE OF PERSON

(REF IS OID SYSTEM GENERATED,

HOME WITH OPTIONS SCOPE HOMES)

CODE EXAMPLE 17-5 Creating tables to store instances of a structured type

CODE EXAMPLE 17-6 uses INSERT INTO statements to populate the tables created in
CODE EXAMPLE 17-5. For example, the INSERT INTO PEOPLE statement inserts an
instance of the UDT PERSON into the table PEOPLE. When this command is executed,
the DBMS will also automatically generate a REF value that is a pointer to this
instance of PERSON and store it in the column OID (the column name specified in the
CREATE statement that created the table PEOPLE).

Each column value in these special tables is an attribute of the UDT, which may
itself be a UDT. For example, the first attribute of the UDT PERSON is the value in
the column NAME, which must be an instance of the UDT FULLNAME. The example
assumes that the UDT FULLNAME has an additional two parameter constructor.

A column value may also be a reference to an SQL structured type. For example, the
attribute OCCUPANT of the UDT RESIDENCE is of type REF(PERSON). It takes an
SQL SELECT statement to retrieve the REF value from the table HOMES and use it as

Chapter 17 Customized Type Mapping 169

the value for OCCUPANT, which is shown at the end of CODE EXAMPLE 17-6.

INSERT INTO PEOPLE (NAME, HEIGHT, WEIGHT) VALUES

(

NEW FULLNAME('DAFFY', 'DUCK'),

4,

58

);

INSERT INTO HOMES (DOOR, STREET, CITY, OCCUPANT) VALUES

(

1234,

'CARTOON LANE',

'LOS ANGELES',

(SELECT OID FROM PEOPLE P WHERE P.NAME.FIRST =

'DAFFY')

)

UPDATE PEOPLE SET HOME = (SELECT OID FROM HOMES H WHERE

H.OCCUPANT->NAME.FIRST = 'DAFFY') WHERE

FULLNAME.FIRST = 'DAFFY'

CODE EXAMPLE 17-6 Populating and updating tables that store instances of structured
types

17.4.2 SQLData Implementations

The Java classes defined in CODE EXAMPLE 17-7 are mappings of the SQL structured
types used in the examples in Section 17.4.1. We expect that such classes will
typically be generated by a tool that reads the definitions of those structured types
from the catalog tables and, subject to customizations that a user of the tool may
provide for name mappings and type mappings of primitive fields, will generate
Java classes like those in the example.

In each implementation of SQLData, the method SQLData.readSQL reads the
attributes in the order in which they appear in the SQL definition of the structured
type. Attributes are also read in "row order, depth-first" order, where the complete
structure of each attribute is read recursively before the next attribute is read. The
method SQLData.writeSQL writes each attribute to the output stream in the same
order.

170 JDBC 4.2 Specification • March 2014

public class Residence implements SQLData {

 public int door;

 public String street;

 public String city;

 public Ref occupant;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)

throws SQLException {

 sql_type = type;

 door = stream.readInt();

 street = stream.readString();

 city = stream.readString();

 occupant = stream.readRef();

}

 public void writeSQL (SQLOutput stream) throws SQLException {

stream.writeInt(door);

 stream.writeString(street);

 stream.writeString(city);

 stream.writeRef(occupant);

 }

}

public class Fullname implements SQLData {

 public String first;

 public String last;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)

throws SQLException {

 sql_type = type;

Chapter 17 Customized Type Mapping 171

 first = stream.readString();

 last = stream.readString();

}

 public void writeSQL (SQLOutput stream) throws SQLException {

 stream.writeString(first);

 stream.writeString(last);

 }

}

public class Person implements SQLData {

 Fullname name;

 float height;

 float weight;

 Ref home;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)

throws SQLException {

 sql_type = type;

 name = (Fullname)stream.readObject();

 height = stream.readFloat();

 weight = stream.readFloat();

 home = stream.readRef();

 }

 public void writeSQL (SQLOutput stream)

 throws SQLException {

 stream.writeObject(name);

 stream.writeFloat(height);

 stream.writeFloat(weight);

 stream.writeRef(home);

 }

}

172 JDBC 4.2 Specification • March 2014

CODE EXAMPLE 17-7 Classes implementing the SQLData interface

CODE EXAMPLE 17-8 puts entries for custom mappings in the connection’s type map.
Then it retrieves the Ref instance stored in the OCCUPANT column of the table
HOMES. This Ref instance is set as a parameter in the where clause of the query to
get the name of the occupant. When the method getObject is called to retrieve an
instance of FULLNAME, the driver looks in the connections type map and uses the
SQLData implementation, Fullname, to custom map the FULLNAME value.

// set up mappings for the connection

try {

java.util.Map map = con.getTypeMap();

map.put(“S.RESIDENCE", Class.forName("Residence"));

map.put("S.FULLNAME", Class.forName("Fullname"));

map.put("S.PERSON", Class.forName("Person"));

}

catch (ClassNotFoundException ex) {}

PreparedStatement pstmt;

ResultSet rs;

pstmt = con.prepareStatement("SELECT OCCUPANT FROM HOMES");

rs = pstmt.executeQuery();

rs.next();

Ref ref = rs.getRef(1);

pstmt = con.prepareStatement(

"SELECT FULLNAME FROM PEOPLE WHERE OID = ?");

pstmt.setRef(1, ref);

rs = pstmt.executeQuery(); rs.next();

Fullname who = (Fullname)rs.getObject(1);

// prints "Daffy Duck"

System.out.println(who.first + " " + who.last);

CODE EXAMPLE 17-8 Retrieving a custom mapping

Chapter 17 Customized Type Mapping 173

17.4.3 Mirroring SQL Inheritance in the Java
Programming Language

SQL structured types may be defined to form an inheritance hierarchy. For example,
consider SQL type STUDENT, which inherits from PERSON:

CREATE TYPE PERSON AS

(NAME VARCHAR(20),

BIRTH DATE)

NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON AS

(GPA NUMERIC(4,2))

NOT FINAL;

CODE EXAMPLE 17-9 Creating a hierarchy of SQL types

The following Java classes can represent data of those SQL types. Class Student
extends Person, mirroring the SQL type hierarchy. Methods SQLData.readSQL
and SQLData.writeSQL of the subclass cascade each call to the corresponding
method in its superclass in order to read or write the superclass attributes before
reading or writing the subclass attributes.

import java.sql.*;

 ...

 public class Person implements SQLData {

 public String name;

 public Date birth;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)

throws SQLException {

sql_type = type;

 name = data.readString();

 birth = data.readDate();

 }

 public void writeSQL (SQLOutput data)

 throws SQLException {

174 JDBC 4.2 Specification • March 2014

 data.writeString(name);

 data.writeDate(birth);

 }

 }

 public class Student extends Person {

 public BigDecimal GPA;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)

throws SQLException {

 sql_type = type;

 super.readSQL(data, type);

 GPA = data.readBigDecimal();

 }

 public void writeSQL (SQLOutput data)

 throws SQLException {

 super.writeSQL(data);

 data.writeBigDecimal(GPA);

 }

 }

CODE EXAMPLE 17-10 Mirroring SQL type hierarchies in Java classes

The Java class hierarchy need not mirror the SQL inheritance hierarchy. For
example, the class Student above could have been declared without a superclass.
In this case, Student could contain fields to hold the inherited attributes of the SQL
type STUDENT as well as the attributes declared by STUDENT itself.

17.4.4 Example Mapping of SQL DISTINCT Type

CODE EXAMPLE 17-11 illustrates creating an SQL DISTINCT type, MONEY, and
CODE EXAMPLE 17-12 illustrates a Java class, Money, that represents it.

Chapter 17 Customized Type Mapping 175

CREATE TYPE MONEY AS NUMERIC(10,2) FINAL;

CODE EXAMPLE 17-11 Creating an SQL DISTINCT type

public class Money implements SQLData {

public java.math.BigDecimal value;

private String sql_type;

public String getSQLTypeName() { return sql_type; }

public void readSQL (SQLInput stream, String type)

throws SQLException {

sql_type = type;

value = stream.readBigDecimal();

}

public void writeSQL (SQLOutput stream) throws SQLException {

stream.writeBigDecimal(value);

}

}

CODE EXAMPLE 17-12 Java class that represents a DISTINCT type

17.5 Effect of Transform Groups
Transform groups (SQL:2003) can be used to convert a user-defined SQL type into
predefined SQL types. This transformation is performed by the underlying data
source before it is returned to the JDBC driver.

If transform groups are used for a user-defined type, and the application has not
defined a mapping for that type to a Java class, then the ResultSetMetaData
method getColumnClass should return the Java class corresponding to the data
type produced by the transformation function (that is, String for a VARCHAR).

Note – This is consistent with the behavior for DISTINCT types.

176 JDBC 4.2 Specification • March 2014

If transform groups are used for a UDT, and the application has defined a mapping
for that type to a Java class, then the SQLInput stream delivered by the JDBC driver
during an invocation of the method readSQL contains only a single value, that is,
the result produced by the transformation function. The same model holds for the
method writeSQL.

17.6 Generality of the Approach
Users have great flexibility in customizing the Java classes that represent SQL
structured and DISTINCT types. They control the mappings of built-in SQL attribute
types to Java field types. They control the mappings of SQL names (of types and
attributes) to Java names (of classes and fields). Users may add (to Java classes that
represent SQL types) fields and methods that implement domain-specific
functionality. Users can generate JavaBeans components as the classes that represent
SQL types.

A user can even map a single SQL type to different Java classes, depending on
arbitrary conditions. To do that, the user must customize the implementation of
SQLData.readSQL to construct and return objects of different classes under
different conditions.

Similarly, the user can map a single SQL value to a graph of Java objects. Again, that
is accomplished by customizing the implementation of the method
SQLData.readSQL to construct multiple objects and distribute the SQL attributes
into fields of those objects.

A customization of the SQLData.readSQL method could populate a connection’s
type map incrementally. This flexibility will allow users to map SQL types
appropriately for different kinds of applications.

17.7 NULL Data
An application uses the existing getObject and setObject mechanism to retrieve
and store SQLData values. We note that when the second parameter, x, of method
PreparedStatement.setObject has the value null, the driver executes the SQL
statement as if the SQL literal NULL had appeared in its place.

void setObject (int i, Object x) throws SQLException;

Chapter 17 Customized Type Mapping 177

When parameter x is null, there is no enforcement that the corresponding
argument expression is of a Java type that could successfully be passed to that SQL
statement if its value were not null. The Java programming language null carries
no type information. For example, a null Java programming language variable of
class AntiMatter could be passed as an argument to an SQL statement that
requires a value of SQL type MATTER, and no error would result, even though the
relevant type map object did not permit the translation of MATTER to AntiMatter.

178 JDBC 4.2 Specification • March 2014

179

CHAPTER 18

Relationship to Connectors

The Java EE Connector Architecture Specification defines a set of contracts that
allow a resource adapter to extend a container in a pluggable way. A resource
adapter provides connectivity to an external system from the application server. The
resource adapter’s functionality is similar to that provided by the JDBC interfaces
used in the Java EE platform to establish a connection with a data source. These
interfaces, which the Connector specification refers to as the service provider interface
(SPI), are the following:

n DataSource

n ConnectionPoolDataSource
n XADataSource

Additionally, the Connector Architecture defines a packaging format to allow a
resource adapter to be deployed into a Java EE compliant application server.

18.1 System Contracts
The system contracts defined in the Connector specification describe the interface
between an application server and one or more resource adapters. This interface
allows a resource adapter to be bundled in such a way that it can be used by any
application server that supports the system contracts.

The following standard contracts are defined between an application server and a
data source system:

n A connection management contract that enables application components to
connect to a data source.

The connection management contract is equivalent to the services described by
the JDBC interfaces DataSource and ConnectionPoolDataSource.

n A transaction management contract between the transaction manager and a data
source supporting transactional access to its resources.

180 JDBC 4.2 Specification • March 2014

The transaction contract is equivalent to the services described by the JDBC
interface XADataSource.

n A security contract that enables secure access to a data source.

The security contract does not have an equivalent in the JDBC API.
Authentication in the JDBC API always consists of providing a user name and
a password.

The JDBC specification does not make a distinction between its application
programming interface (API) and the SPI. However, a driver can map the JDBC
interfaces in the SPI to the Connector system contracts.

18.2 Mapping Connector System Contracts to
JDBC Interfaces
Driver vendors who want to supply JDBC drivers that use the Connector system
contracts have several options:

1. To write a set of classes that wrap a JDBC driver and implement the Connector
system contracts. Constructing these wrappers is fairly straightforward and
should allow JDBC driver vendors to provide resource adapters quickly enough
so that they are available when application server vendors have implemented the
Connector contracts.

2. To implement the Connector system contracts natively. This approach avoids the
overhead of wrapper classes, but the implementation effort may be more
involved and time-consuming. This alternative is a more long-term option.

Either approach will allow JDBC driver vendors to package their drivers as resource
adapters and get all the benefits of pluggability, packaging, and deployment.

Note – There are no plans to deprecate or remove the current JDBC interfaces,
DataSource, ConnectionPoolDataSource and XADataSource.

Chapter 18 Relationship to Connectors 181

18.3 Packaging JDBC Drivers in Connector
RAR File Format
Resource adapters can be packaged, along with a deployment descriptor, into a
Resource adapter ARchive, or RAR file. The RAR file contains the Java classes/
interfaces, native libraries, deployment descriptor, and other resources needed to
deploy the adapter.

The deployment descriptor maps the classes in the resource adapter to the specific
roles that they perform. The descriptor also details the capabilities of the resource
adapter in terms of what level of transactional support it provides, the kind of
security it supports, and so on.

CODE EXAMPLE 18-1 is an example of a deployment descriptor for a JDBC driver. The
class com.acme.JdbcManagedConnectionFactory could be supported by an
implementation of javax.sql.XADataSource. The resource adapter section
contains information on the level of transaction support, the mechanism used for
authentication, and configuration information for deploying the data source in the
JNDI namespace.

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http:/

/www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http:/

/java.sun.com/xml/ns/j2ee/connector_1_6.xsd"

 version="1.6">

 <description>Resource adapter wrapping Datasource implementation

of driver</description>

 <display-name>Acme JDBC Adapter</display-name>

 <vendor-name>Acme Software Inc</vendor-name>

 <eis-type>JDBC Database</eis-type>

 <resourceadapter-version>1.0</resourceadapter-version>

 <license>

 <license-required>false</license-required>

 </license>

 <resourceadapter>

 <resourceadapter-class>

 com.acme.JdbcResourceAdapter

182 JDBC 4.2 Specification • March 2014

 </resourceadapter-class>

 <outbound-resourceadapter>

 <connection-definition>

 <managedconnectionfactory-class>

 com.acme.JdbcManagedConnectionFactory

 </managedconnectionfactory-class>

 <connectionfactory-interface>

 javax.sql.DataSource

 </connectionfactory-interface>

 <connectionfactory-impl-class>

 com.acme.JdbcDataSource

 </connectionfactory-impl-class>

 <connection-interface>

 java.sql.Connection

 </connection-interface>

 <connection-impl-class>

 com.acme.JdbcConnection

 </connection-impl-class>

 <config-property>

 <config-property-name>

 XADataSourceName

 </config-property-name>

 <config-property-type>

 java.lang.String

 </config-property-type>

 <config-property-value>

 jdbc/XAAcme

 </config-property-value>

 </config-property>

 </connection-definition>

 <transaction-support>

 XATransaction

 </transaction-support>

 <authentication-mechanism>

 <authentication-mechanism-type>

Chapter 18 Relationship to Connectors 183

 BasicPassword

 </authentication-mechanism-type>

 <credential-interface>

 javax.resource.spi.security.PasswordCredential

 </credential-interface>

 </authentication-mechanism>

 <reauthentication-support>

 false

 </reauthentication-support>

 </outbound-resourceadapter>

 </resourceadapter>

</connector>

CODE EXAMPLE 18-1 Example of a resource adapter deployment descriptor.

See the Connector specification for more details.

184 JDBC 4.2 Specification • March 2014

185

CHAPTER 19

Wrapper Interface

The Wrapper interface provides a mechanism for JDBC users to be able to access an
instance of a resource which has been wrapped for architectural reasons. This
mechanism helps to eliminate the need to use non-standard means to access vendor
specific resources.

The following JDBC interfaces are subinterfaces of the Wrapper interface:

n java.sql.Connection

n java.sql.DatabaseMetaData

n java.sql.ParameterMetaData

n java.sql.ResultSet

n java.sql.ResultSetMetaData

n java.sql.Statement

n javax.sql.Datasource

19.1 Wrapper interface methods
The following methods are available on the Wrapper interface:

n isWrapperFor

n unwrap

186 JDBC 4.2 Specification • March 2014

19.1.1 unwrap method

The unwrap method is used to return an object that implements the specified
interface allowing access to vendor-specific methods. The object that is returned may
either be the object found to implement the specified interface or a proxy for that
object.

If the receiver implements the specified interface then that is the object which is
returned. If the receiver is a wrapper and the wrapped object implements the
interface then the wrapped object or a proxy for the object is returned. Otherwise the
returned object is the result of calling unwrap recursively on the wrapped object. If
the receiver is not a wrapper and does not implement the specified interface, then an
SQLException is thrown.

19.1.2 isWrapperFor method

The isWrapperFor method can be used to determine if the instance implements
the specified interface or if the instance is a wrapper for an object that does.

If the object implements the specified interface then a value of true is returned. If
this instance is a wrapper, then the method isWrapperFor is recursively called on
the wrapped object. If the instance does not implement the interface and is not a
wrapper, a value of false is returned.

This method should be implemented as a low-cost operation compared to calling the
unwrap method. If the isWrapperFor method returns true, then calling the
unwrap method with the same interface must succeed.

CODE EXAMPLE 19-1 provides an example of using the Wrapper interface methods:

Statement stmt = conn.createStatement();

Class clzz = Class.forName("oracle.jdbc.OracleStatement");

if(stmt.isWrapperFor(clzz)) {

 OracleStatement os = (OracleStatement)stmt.unwrap(clzz);

 os.defineColumnType(1, Types.NUMBER);

}

CODE EXAMPLE 19-1 Using the isWrapper and unwrap methods

187

APPENDIX A

Revision History

Appendix TABLE A-1 presents a summary of the revisions made to this
specification.

TABLE A-1 Revision History

Revision Dash Date Comments

Maintenance
Release

01 March 2014 Refer to Chapter 3 for all of the
changes in this maintenance release.

188 JDBC 4.2 Specification • March 2014

189

APPENDIX B

Data Type Conversion Tables

This appendix describes mappings and conversions that drivers must support.

The following mappings and conversions are covered:

n JDBC Types Mapped to Java Types

n Java Types Mapped to JDBC Types

n JDBC Types Mapped to Java Object Types

n Java Object Types Mapped to JDBC Types

n Conversions by setObject and setNull from Java Object Types to JDBC Types

n Type Conversions Supported by ResultSet getter Methods

B.1 JDBC Types Mapped to Java Types
TABLE B-1 shows the conceptual correspondence between JDBC types and Java types.
A programmer should write code with this mapping in mind. For example, if a
value in the database is a SMALLINT, a short should be the data type used in a
JDBC application.

All CallableStatement getter methods except for getObject use this mapping.
The getObject methods for both the CallableStatement and ResultSet
interfaces use the mapping in TABLE B-3.

TABLE B-1 JDBC Types Mapped to Java Types

JDBC Type Java Type

CHAR String

VARCHAR String

190 JDBC 4.2 Specification • March 2014

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

BOOLEAN boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB java.sql.Clob

BLOB java.sql.Blob

ARRAY java.sql.array

DISTINCT Mapping of underlying type

STRUCT java.sql.Struct

REF java.sql.Ref

DATALINK java.net.URL

JAVA_OBJECT Underlying Java class

ROWID java.sql.RowId

TABLE B-1 JDBC Types Mapped to Java Types

JDBC Type Java Type

Appendix B Data Type Conversion Tables 191

B.2 Java Types Mapped to JDBC Types
TABLE B-2 shows the mapping a driver should use for the updater methods in the
ResultSet interface and for IN parameters. PreparedStatement setter methods
and RowSet setter methods use this table for mapping an IN parameter, which is a
Java type, to the JDBC type that will be sent to the database. Note that the
setObject methods for these two interfaces use the mapping shown in TABLE B-4.

NCHAR String

NVARCHAR String

LONGNVARCHAR String

NCLOB java.sql.NClob

SQLXML java.sql.SQLXML

TABLE B-2 Standard Mapping from Java Types to JDBC Types

Java Type JDBC Type

String CHAR, VARCHAR, LONGVARCHAR, NCHAR,
NVARCHAR or LONGNVARCHAR

java.math.BigDecimal NUMERIC

boolean BIT or BOOLEAN

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] BINARY, VARBINARY, or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

TABLE B-1 JDBC Types Mapped to Java Types

JDBC Type Java Type

192 JDBC 4.2 Specification • March 2014

B.3 JDBC Types Mapped to Java Object
Types
ResultSet.getObject and CallableStatement.getObject use the mapping
shown in TABLE B-3 for standard mappings.

Note – The JDBC 1.0 specification defined the Java object mapping for the
SMALLINT and TINYINT JDBC types to be Integer. The Java language did not
include the Byte and Short data types when the JDBC 1.0 specification was
finalized. The mapping of SMALLINT and TINYINT to Integer is maintained to
preserve backwards compatibility.

java.sql.Timestamp TIMESTAMP

java.sql.Clob CLOB

java.sql.Blob BLOB

java.sql.Array ARRAY

java.sql.Struct STRUCT

java.sql.Ref REF

java.net.URL DATALINK

Java class JAVA_OBJECT

java.sql.RowId ROWID

java.sql.NClob NCLOB

java.sql.SQLXML SQLXML

TABLE B-3 Mapping from JDBC Types to Java Object Types

JDBC Type Java Object Type

CHAR String

VARCHAR String

TABLE B-2 Standard Mapping from Java Types to JDBC Types

Java Type JDBC Type

Appendix B Data Type Conversion Tables 193

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT Boolean

BOOLEAN Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

DISTINCT Object type of underlying type

CLOB java.sql.Clob

BLOB java.sql.Blob

ARRAY java.sql.Array

STRUCT java.sql.Struct or

java.sql.SQLData

REF java.sql.Ref

DATALINK java.net.URL

JAVA_OBJECT Underlying Java class

TABLE B-3 Mapping from JDBC Types to Java Object Types

JDBC Type Java Object Type

194 JDBC 4.2 Specification • March 2014

B.4 Java Object Types Mapped to JDBC
Types
PreparedStatement.setObject, PreparedStatement.setNull, RowSet.setNull and
RowSet.setObject use the mapping shown TABLE B-4 when no parameter specifying a
target JDBC type is provided.

ROWID java.sql.RowId

NCHAR String

NVARCHAR String

LONGNVARCHAR String

NCLOB java.sql.NClob

SQLXML java.sql.SQLXML

TABLE B-4 Mapping from Java Object Types to JDBC Types

Java Object Type JDBC Type

String CHAR, VARCHAR, LONGVARCHAR, NCHAR,
NVARCHAR or LONGNVARCHAR

java.math.BigDecimal NUMERIC

Boolean BIT or BOOLEAN

Byte TINYINT

Short SMALLINT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] BINARY, VARBINARY, or LONGVARBINARY

java.math.BigInteger BIGINT

TABLE B-3 Mapping from JDBC Types to Java Object Types

JDBC Type Java Object Type

Appendix B Data Type Conversion Tables 195

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.sql.Clob CLOB

java.sql.Blob BLOB

java.sql.Array ARRAY

java.sql.Struct STRUCT

java.sql.Ref REF

java.net.URL DATALINK

Java class JAVA_OBJECT

java.sql.RowId ROWID

java.sql.NClob NCLOB

java.sql.SQLXML SQLXML

java.util.Calendar TIMESTAMP

java.util.Date TIMESTAMP

java.time.LocalDate DATE

java.time.LocalTime TIME

java.time.LocalDateTime TIMESTAMP

java.time.OffsetTime TIME_WITH_TIMEZONE

java.time.OffsetDatetime TIMESTAMP_WITH_TIMEZONE

TABLE B-4 Mapping from Java Object Types to JDBC Types

Java Object Type JDBC Type

196 JDBC 4.2 Specification • March 2014

B.5 Conversions by setObject and setNull
from Java Object Types to JDBC Types
TABLE B-5 shows which JDBC types may be specified as the target JDBC type to the
methods PreparedStatement.setObject, PreparedStatement.setNull,
RowSet.setNull, and RowSet.setObject.

TABLE B-5 Conversions Performed by setObject and setNull Between Java Object Types
and Target JDBC Types

Java Object Type Supported JDBC Type

String TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR,
BINARY, VARBINARY, LONVARBINARY, DATE,
TIME, TIMESTAMP, NCHAR, NVARCHAR,
LONGNVARCHAR

java.math.BigDecimal TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Boolean TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Byte TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Short TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Integer TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Long TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Float TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

Appendix B Data Type Conversion Tables 197

Double TINYINT, SMALLINT, INTEGER, BIGINT, REAL,
FLOAT, DOUBLE, DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR, LONGVARCHAR

byte[] BINARY, VARBINARY, or LONGVARBINARY

java.math.BigInteger BIGINT, CHAR, VARCHAR, LONGVARCHAR

java.sql.Date CHAR, VARCHAR, LONGVARCHAR, DATE,
TIMESTAMP

java.sql.Time CHAR, VARCHAR, LONGVARCHAR, TIME,
TIMESTAMP

java.sql.Timestamp CHAR, VARCHAR, LONGVARCHAR, DATE, TIME,
TIMESTAMP

java.sql.Array ARRAY

java.sql.Blob BLOB

java.sql.Clob CLOB

java.sql.Struct STRUCT

java.sql.Ref REF

java.net.URL DATALINK

Java class JAVA_OBJECT

java.sql.RowId ROWID

java.sql.NClob NCLOB

java.sql.SQLXML SQLXML

java.util.Calendar CHAR, VARCHAR, LONGVARCHAR, DATE, TIME,
TIMESTAMP, ARRAY

java.util.Date CHAR, VARCHAR, LONGVARCHAR, DATE, TIME,
TIMESTAMP, ARRAY

java.time.LocalDate CHAR, VARCHAR, LONGVARCHAR, DATE

java.time.LocalTime CHAR, VARCHAR, LONGVARCHAR, TIME

java.time.LocalDateTime CHAR, VARCHAR, LONGVARCHAR, DATE, TIME,
TIMESTAMP

TABLE B-5 Conversions Performed by setObject and setNull Between Java Object Types
and Target JDBC Types

Java Object Type Supported JDBC Type

198 JDBC 4.2 Specification • March 2014

B.6 Type Conversions Supported by
ResultSet getter Methods
TABLE B-6 shows which JDBC types may be returned by ResultSet getter methods.
This table also shows the conversions used by the SQLInput reader methods, except
that they use only the recommended conversions.

java.time.OffsetTime CHAR, VARCHAR, LONGVARCHAR,
TIME_WITH_TIMEZONE

java.time.OffsetDatetime CHAR, VARCHAR, LONGVARCHAR,
TIME_WITH_TIMEZONE,
TIMESTAMP_WITH_TIMEZONE

TABLE B-6 Use of ResultSet getter Methods to Retrieve JDBC Data Types

Java Object Type

Recommended JDBC

Type Supported JDBC Type

getByte TINYINT TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR, ROWID

getShort SMALLINT TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

getInt INTEGER TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

getLong BIGINT TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

TABLE B-5 Conversions Performed by setObject and setNull Between Java Object Types
and Target JDBC Types

Java Object Type Supported JDBC Type

Appendix B Data Type Conversion Tables 199

getFloat REAL TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

getDouble FLOAT, DOUBLE TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

getBigDecimal DECIMAL,
NUMERIC

TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

getBoolean BIT,
BOOLEAN

TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR

getString CHAR,
VARCHAR

TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR, BINARY,
VARBINARY, LONVARBINARY,
DATE, TIME, TIMESTAMP,
DATALINK, NCHAR, NVARCHAR,
LONGNVARCHAR

getNString NCHAR,
NVARCHAR

TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR, BINARY,
VARBINARY, LONVARBINARY,
DATE, TIME, TIMESTAMP,
DATALINK, NCHAR, NVARCHAR,
LONGNVARCHAR

getBytes BINARY,
VARBINARY

BINARY, VARBINARY,
LONGVARBINARY

TABLE B-6 Use of ResultSet getter Methods to Retrieve JDBC Data Types

Java Object Type

Recommended JDBC

Type Supported JDBC Type

200 JDBC 4.2 Specification • March 2014

getDate DATE CHAR, VARCHAR,

LONGVARCHAR, DATE,
TIMESTAMP

getTime TIME CHAR, VARCHAR,

LONGVARCHAR, TIME,
TIMESTAMP

getTimestamp TIMESTAMP CHAR, VARCHAR,

LONGVARCHAR, DATE, TIME,
TIMESTAMP

getAsciiStream LONGVARCHAR CHAR, VARCHAR,

LONGVARCHAR, BINARY,
VARBINARY, LONGVARBINARY,
CLOB, NCLOB

getBinaryStream LONGVARBINARY BINARY, VARBINARY,
LONGVARBINARY

getCharacterStream LONGVARCHAR CHAR, VARCHAR,

LONGVARCHAR, BINARY,
VARBINARY, LONGVARBINARY,
CLOB, NCHAR, NVARCHAR,
LONGNVARCHAR, NCLOB,
SQLXML

getNCharacterStream LONGNVARCHAR CHAR, VARCHAR,

LONGVARCHAR, BINARY,
VARBINARY, LONGVARBINARY,
CLOB, NCHAR, NVARCHAR,
LONGNVARCHAR, NCLOB,
SQLXML

getClob CLOB CLOB, NCLOB

getNClob NCLOB CLOB, NCLOB

getBlob BLOB BLOB

getArray ARRAY ARRAY

getRef REF REF

getURL DATALINK DATALINK

TABLE B-6 Use of ResultSet getter Methods to Retrieve JDBC Data Types

Java Object Type

Recommended JDBC

Type Supported JDBC Type

Appendix B Data Type Conversion Tables 201

getObject STRUCT,
JAVA_OBJECT

TINYINT, SMALLINT, INTEGER,
BIGINT, REAL, FLOAT, DOUBLE,
DECIMAL, NUMERIC, BIT,
BOOLEAN, CHAR, VARCHAR,

LONGVARCHAR, BINARY,
VARBINARY, LONVARBINARY,
DATE, TIME, TIMESTAMP, CLOB,
BLOB, ARRAY, REF, DATALINK,
STRUCT, JAVA_OBJECT, ROWID,
NCHAR, NVARCHAR,
LONGNVARCHAR, NCLOB,
SQLXML, TIME_WITH_TIMEZONE,
TIMESTAMP_WITH_TIMEZONE

getRowId ROWID ROWID

getSQLXML SQLXML SQLXML

TABLE B-6 Use of ResultSet getter Methods to Retrieve JDBC Data Types

Java Object Type

Recommended JDBC

Type Supported JDBC Type

202 JDBC 4.2 Specification • March 2014

203

APPENDIX C

Scalar Functions

The JDBC API supports escape syntax for numeric, string, time, date, system, and
conversion functions on scalar values. These scalar functions may be used in SQL
strings as described in Section 13.4.1 “Scalar Functions” on page 13-114. The Open
Group CLI specification provides more information on the semantics of the scalar
functions. The scalar functions are listed below for reference.

If a DBMS supports a scalar function, the driver should also. Because scalar
functions are supported by different DBMSs with slightly different syntax, it is the
driver’s job either to map them into the appropriate syntax or to implement the
functions directly in the driver.

A user should be able to find out which functions are supported by calling metadata
methods. For example, the method DatabaseMetaData.getNumericFunctions returns a
comma separated list of the Open Group CLI names of the numeric functions
supported. Similarly, the method DatabaseMetaData.getStringFunctions returns a list of
string functions supported, and so on.

The scalar functions are listed by category:

C.1 NUMERIC FUNCTIONS
Function Name Function Returns

ABS(number) Absolute value of number
ACOS(float) Arccosine, in radians, of float
ASIN(float) Arcsine, in radians, of float
ATAN(float) Arctangent, in radians, of float
ATAN2(float1, float2) Arctangent, in radians, of float2 / float1
CEILING(number) Smallest integer >= number
COS(float) Cosine of float radians
COT(float) Cotangent of float radians

204 JDBC 4.2 Specification • March 2014

DEGREES(number) Degrees in number radians
EXP(float) Exponential function of float
FLOOR(number) Largest integer <= number
LOG(float) Base e logarithm of float
LOG10(float) Base 10 logarithm of float
MOD(integer1, integer2) Remainder for integer1 / integer2
PI() The constant pi
POWER(number, power) number raised to (integer) power
RADIANS(number) Radians in number degrees
RAND(integer) Random floating point for seed integer
ROUND(number, places) number rounded to places places
SIGN(number) -1 to indicate number is < 0;

0 to indicate number is = 0;
1 to indicate number is > 0

SIN(float) Sine of float radians
SQRT(float) Square root of float
TAN(float) Tangent of float radians
TRUNCATE(number, places) number truncated to places places

C.2 STRING FUNCTIONS
Function Name Function Returns

ASCII(string) Integer representing the ASCII code value of the leftmost character in string
CHAR(code) Character with ASCII code value code, where code is between 0 and 255
CHAR_LENGTH(string
[,CHARACTERS|OCTETS}) Returns the length in characters of the string expression if it is a character

datatype; otherwise returns the length in bytes of the string expression
whose result is the smallest integer not less than the number of bits divided
by 8

CHARACTER_LENGTH(string Synonym for CHAR_LENGTH(string)
[,CHARACTERS|OCTETS})
CONCAT(string1, string2) Character string formed by appending string2 to string1; if a string is null, the

result is DBMS-dependent
DIFFERENCE(string1, Integer indicating the difference between the
string2) values returned by the function SOUNDEX for string1 and string2
INSERT(string1, start, A character string formed by deleting length
length, string2) characters from string1 beginning at start, and inserting string2 into string1 at

start
LCASE(string) Converts all uppercase characters in string to lowercase
LEFT(string, count) The count leftmost characters from string
LENGTH(string Number of characters in string, excluding trailing blanks,
[, CHARACTERS|OCTETS])
LOCATE(string1, string2[, start]) Position in string2 of the first occurrence of string1, searching from the begin-

ning of string2; if start is specified, the search begins from position start. 0 is
returned if string2 does not contain string1. Position 1 is the first character in
string2.

LTRIM(string) Characters of string with leading blank spaces removed

Appendix C Scalar Functions 205

OCTET_LENGTH(string) Returns the length in bytes of the string expression whose result is the small-
est integer not less than the number of bits divided by 8

POSITION(substring IN string
[, CHARACTERS|OCTETS]) Returns the position of first occurrence of substr in string returned as an NU-

MERIC with an implementation defined precision and a scale of 0
REPEAT(string, count) A character string formed by repeating string count times
REPLACE(string1, string2, Replaces all occurrences of string2 in string1
string3) with string3
RIGHT(string, count) The count rightmost characters in string
RTRIM(string) The characters of string with no trailing blanks
SOUNDEX(string) A character string, which is data source-dependent, representing the sound of

the words in string; this could be a four-digit SOUNDEX code, a phonetic rep-
resentation of each word, etc.

SPACE(count) A character string consisting of count spaces
SUBSTRING(string, start, length A character string formed by extracting length
[, CHARACTERS|OCTETS}) characters from string beginning at start
UCASE(string) Converts all lowercase characters in string to uppercase

Note – SQL 2003 Feature T061, “UCS Support”, is required by the Database in order
to support OCTETS

C.3 TIME and DATE FUNCTIONS
Function Name Function Returns

CURRENT_DATE[()] Synonym for CURDATE()
CURRENT_TIME[()] Synonym for CURTIME()
CURRENT_TIMESTAMP[()] Synonym for NOW()
CURDATE() The current date as a date value
CURTIME() The current local time as a time value
DAYNAME(date) A character string representing the day component of date; the name for the

day is specific to the data source
DAYOFMONTH(date) An integer from 1 to 31 representing the day of the month in date
DAYOFWEEK(date) An integer from 1 to 7 representing the day of the week in date; 1 represents

Sunday
DAYOFYEAR(date) An integer from 1 to 366 representing the day of the year in date
EXTRACT(field FROM source) Extract the field portion from the source. The source is a datetime value. The

value for field may be one of the following:
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND

HOUR(time) An integer from 0 to 23 representing the hour component of time
MINUTE(time) An integer from 0 to 59 representing the minute component of time
MONTH(date) An integer from 1 to 12 representing the month component of date
MONTHNAME(date) A character string representing the month component of date; the name for

the month is specific to the data source
NOW() A timestamp value representing the current date and time

206 JDBC 4.2 Specification • March 2014

QUARTER(date) An integer from 1 to 4 representing the quarter in date; 1 represents January
1 through March 31

SECOND(time) An integer from 0 to 59 representing the second component of time
TIMESTAMPADD(interval, A timestamp calculated by adding count num-
count, timestamp) ber of interval(s) to timestamp; interval may be one of the following:

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE,
SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH,
SQL_TSI_QUARTER, or SQL_TSI_YEAR

TIMESTAMPDIFF(interval, An integer representing the number of interval
timestamp1, timestamp2) by which timestamp2 is greater than timestamp1; interval may be one of the

following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MIN-
UTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH,
SQL_TSI_QUARTER, or SQL_TSI_YEAR

WEEK(date) An integer from 1 to 53 representing the week of the year in date
YEAR(date) An integer representing the year component of date

C.4 SYSTEM FUNCTIONS
Function Name Function Returns

DATABASE() Name of the database
IFNULL(expression, value) value if expression is null;

expression if expression is not null
USER() User name in the DBMS

C.5 CONVERSION FUNCTIONS
Function Name Function Returns

CONVERT(value, SQLtype) value converted to SQLtype where SQLtype may be one of the following SQL
types:
SQL_BIGINT, SQL_BINARY, SQL_BIT, SQL_BLOB, SQL_BOOLEAN,
SQL_CHAR, SQL_CLOB, SQL_DATE, SQL_DECIMAL, SQL_DATALINK,
SQL_DOUBLE, SQL_FLOAT, SQL_INTEGER, SQL_LONGVARBINARY,
SQL_LONGNVARCHAR, SQL_LONGVARCHAR, SQL_NCHAR, SQL_N-
CLOB, SQL_NUMERIC, SQL_NVARCHAR, SQL_REAL, SQL_ROWID,
SQL_SQLXML, SQL_SMALLINT, SQL_TIME, SQL_TIMESTAMP, SQL_TI-
NYINT, SQL_VARBINARY, or SQL_VARCHAR

Note – Previous versions of the JDBC specification defined the SQLtype without the
SQL_ prefix, for example BIGINT and BINARY. JDBC drivers should continue to
support this form for SQLtype.

Appendix C Scalar Functions 207

208 JDBC 4.2 Specification • March 2014

209

APPENDIX D

Related Documents

This specification makes reference to the following documents.

Data Management: SQL Call Level Interface (X/Open SQL CLI) Available at http:/
/www.opengroup.org.

Distributed Transaction Processes: The XA Specification (X/Open CAE) Available at
http://www.opengroup.org.

JDBC RowSet 1.0.1 Implementations Specification. Available at http://jcp.org/en/
jsr/detail?id=114.

JDBC 3.0 Specification (JDBC 3.0). Available at http://jcp.org/en/jsr/detail?id=54

JDBC 4.0 Specification (JDBC 4.0). Available at http://jcp.org/en/jsr/detail?id=221.

JDBC 2.1 API (JDBC 2.1). Available at http://www.oracle.com/technetwork/java/
download-141179.html.

JDBC 2.0 Standard Extension API (JDBC extension specification). Available at http:/
/www.oracle.com/technetwork/java/download-141179.html

JDBC 1.22 API (JDBC 1.22). Available at http://www.oracle.com/technetwork/
java/download-141179.html.

JavaBeans 1.01 Specification (JavaBeans specification). Available athttp://
www.oracle.com/technetwork/java/javase/glasgow-139720.html.

Java Transaction API, Version 1.2 (JTA Specification). Available at http://
www.oracle.com/technetwork/java/javaee/jta/index.html.

Java Naming and Directory Interface 1.2 Specification (JNDI specification). Available
at http://www.oracle.com/technetwork/java/jndi/index.html.

Enterprise Java Beans Specification, Version 3.2 (EJB). Available at http://
www.oracle.com/technetwork/java/javaee/ejb/.

210 JDBC 4.2 Specification • March 2014

Java EE Connector Architecture Specification, Version 1.7 http://jcp.org/en/jsr/
detail?id=322.

The following documents are collectively refered to as SQL:2003:

ISO/IEC 9075-1:2003, Information technology - Database languages - SQL - Part 1:
Framework (SQL/Framework).

ISO/IEC 9075-2:2003, Information technology - Database languages - SQL - Part 2:
Foundation (SQL/Foundation).

ISO/IEC 9075-3:2003, Information technology - Database languages - SQL - Part 3:
Call-Level Interface (SQL/CLI).

ISO/IEC 9075-4:2003, Information technology - Database languages - SQL - Part 4:
Persistent Stored Modules (SQL/PSM).

ISO/IEC 9075-5:2003, Information technology - Database languages - SQL - Part 5:
Host Language Bindings (SQL/Bindings).

ISO/IEC 9075-9:2003 Information technology - Database languages - SQL - Part 9:
Management of External Data (SQL/MED)

ISO/IEC 9075-14:2003 Information technology - Database languages - SQL - Part 14:
XML-Related Specifications (SQL/XML)

The following document is a reference for SQLJ:

ISO/IEC 9075-10:2003, Information technology - Database Languages SQL - Part 10:
Object Language Bindings (SQL/OLB)

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
650 506-7000

For U.S. Sales Office locations, call:
800 Oracle1

